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Abstract

We document new empirical patterns linking the institutional design of American in-
novation to postwar productivity and growth of the U.S. economy. Using recently dig-
itized patent data that distinguish funding sources and ownership structures, we find
that government-funded but privately-owned patents —though only 2% of the total—
account for roughly 20% of medium-term fluctuations in TFP and GDP growth. These
patents are also associated with higher business-sector investment in R&D. Privately
funded patents display significant but smaller aggregate comovements, whereas pub-
licly owned patents have muted average effects yet are more prevalent among disruptive
innovations in health and biotechnology. Patents funded by the NIH and NSF exhibit
the strongest links to subsequent productivity gains and R&D spillovers, while research
institutes and universities outperform for-profit firms in transforming public funds into
high-impact innovation. Taken together, our findings highlight the central role of gov-
ernment support in sustaining U.S. technological leadership and economic growth.
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“New impetus must be given to research in our country. Such impetus can come
promptly only from the Government. We cannot expect industry adequately to fill
the gap. Industry will fully rise to the challenge of applying new knowledge to new
products. The commercial incentive can be relied upon for that. But basic research
is essentially noncommercial in nature. It will not receive the attention it requires
if left to industry.”

— Vannevar Bush (1945a, Chapter 3, p. 16)

1 Introduction

In 1944, as the war was nearing its end, President Roosevelt asked the chief science advisor
and coordinator of U.S. scientific research efforts during World War II (WWII), Vannevar
Bush, to recommend how the U.S. government could support scientific research in the postwar
era. Roosevelt’s objective was to sustain the scientific momentum generated in wartime, and
ensure that scientific progress would benefit public health, economic growth, and national
security in peacetime.

Bush’s reply laid the foundation for post-WWII American innovation. His vision was
based on three pillars exemplifying the role of three players: (i) the government to fund
areas of public interest; (ii) universities and research institutes to nurture the intellectual
freedom necessary for significant discoveries; (iii) the private sector to turn new knowledge
into new products. Bush (1945a)’s recommendations led directly to the creation of influential
institutions such as the National Science Foundation (NSF), the substantial expansion of the
National Institutes of Health (NIH), and established the framework for the contemporary
American innovation ecosystem, characterized by close collaboration between government,
universities, and industries.

In this paper, we assess the macroeconomic impact of the postwar American innovation
model through the lens of Bush (1945a)’s architecture. More specifically, we lever on the
detailed categorization in Gross and Sampat (2025a) of the universe of patents granted in
the U.S. since 1950 to construct novel time-series of innovation activity that distinguish: (i)

patents that are funded by the government but owned by a private entity; (ii) patents that
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are funded, developed and owned by a private entity; (iii) patents that are funded and owned
by the public sector.

After documenting patterns of patent composition by funding source, we link aggregate
outcomes to movements in innovation activity that are not confounded by patenting in other
groups, R&D spending, or broader macroeconomic dynamics—including previously identified
fiscal and monetary policy shocks. By controlling for a rich set of business-cycle indicators,
we ensure that the remaining variation captures fluctuations specific to innovation rather
than macroeconomic conditions. The dynamic correlations we uncover have the hallmark
of technological disruption, moving quantities and prices in opposite directions (Miranda-
Agrippino et al., 2025).

Our analysis uncovers new empirical regularities. Publicly funded but privately owned
patents display the greatest link to medium-term GDP and TFP: though only 2% of the total,
they are associated with roughly 20% of aggregate fluctuations, with significant spillovers to
private investment, R&D spending, real wages, and consumption. Privately funded patents
exhibit weaker comovements, while government-funded and government-owned patents show,
on average, insignificant correlations. However, this average effect masks an important nu-
ance: patents funded and owned by the public sector include a relatively large share of highly
disruptive innovations, whose estimates exceed those of all other categories. Our evidence
suggests that the returns to government-funded patents may be more than twice those of
fully private innovations.

Turning to federal agencies, industries and research fields, a clear ranking emerges. Among
patents funded by the government but owned by the private sector, NIH and NSF support
the most successful innovations in terms of their medium-term correlations with TFP and
GDP growth as well as with business-sector R&D, followed by the Department of Energy and
NASA. The contribution of the Department of Defense is statistically significant but smaller.
Among publicly-funded and -owned patents, health-related patents — those funded by NIH,
and those in the fields of healthcare & biotechnology — have associations with medium-term
GDP and TFP that dwarf those of their private sector counterparts. Moreover, public patents
with higher innovation network centrality are associated with larger increases in productivity

and output, providing further evidence of significant spillovers to the broader economy.



Regarding the primary actors, research conducted by non-profit organizations shows
larger correlations to aggregate outcomes than innovations produced by for-profit entities,
with universities and research institutes performing best on a per-patent basis. Among
for-profit businesses, start-ups —and to a lesser extent venture capital-backed firms— are
more strongly linked to subsequent TFP and GDP growth than established private-sector
companies, but only when backed by public funding: without government support, their
productivity advantage vanishes.

Concrete examples highlight the disproportionate impact of government funded but pri-
vately owned patents. NIH support enabled Fire and Mello’s RNA interference discovery
(2003), transforming molecular biology and therapeutic design. NSF funding at Stanford
produced PageRank (1998), the foundation of Google’s search technology. DARPA- and
NSF-backed advances in signal processing led to Qualcomm’s CDMA patent (1992), central
to modern mobile communications. More recently, federal funding has seeded breakthroughs
such as induced pluripotent stem cells, CAR-T therapies and CRISPR—Cas9 genome editing,
showing how public support paired with private ownership can lead to innovations with large
social returns.

Bush (1945a)’s report offers a natural interpretation of our findings. Research institutes
and universities are associated with the largest productivity gains because they engage in fun-
damental research unconstrained by short-term commercial goals. Private firms, in contrast,
pursue profit-driven innovations with smaller aggregate effects. The public sector is distinc-
tive in bearing the risks of transformative research: while fully public innovations leave little
macroeconomic trace on average, the most fundamental are linked to substantial productivity
gains. These patterns chime with Nelson (1959) and Arrow (1962), who emphasized the role
of government and non-profits in fostering knowledge creation where competitive markets
underprovide.

Of independent interest, our work illustrates how the richness and granularity of patent
data can be exploited to construct aggregate time series across a wide range of heterogeneities.
Here, we focus on the macroeconomic impact of patents by funding source and ownership.
However, our bottom-up approach can be easily extended to many other dimensions empha-

sized in the innovation literature —for instance, to estimate the aggregate effects of patents



by inventors’ and firms’ characteristics such as demographics (Bell et al., 2019), ancestry

(Terry et al., 2025), capital structure and organizational design (Jaravel et al., 2018).

Related Literature. A set of influential empirical studies using patent-level data, such as
Acemoglu et al. (2016), Cohen et al. (2016), Kogan et al. (2017), Kline et al. (2019), Azoulay
et al. (2019), Kelly et al. (2021), Myers and Lanahan (2022), Gross and Sampat (2023, 2025b),
Kalyani et al. (2025) and Bergeaud et al. (2025) levers sharp exogenous variation from event
studies to identify the direct, partial equilibrium effects of technological progress on firm-
level or sectoral outcomes. We complement and generalize the findings from this important
strand of research by eliciting the aggregate connection between innovation, productivity and
GDP in the U.S. economy, paying particular attention to the role of government funding and
private ownership.

A long-standing tradition in empirical macro —spanning Blanchard and Quah (1989),
Gali (1999), Christiano et al. (2003, 2004), Francis and Ramey (2005, 2006), Fisher (2006),
Basu et al. (2006), Fernald (2012), and more recently Miranda-Agrippino et al. (2025), Aghion
et al. (2025)— examines the effects of technology shocks on long-run GDP growth using time
series drawn solely from national accounts. While we also focus on aggregate fluctuations
and comovements, we exploit rich patent-level data to construct new time series of innovation
activity disaggregated by funding source and ownership. This enables us to shed light on both
the transmission channels and the underlying drivers of technological progress and aggregate
productivity.

A growing literature explores how fiscal policy can foster productivity. Several studies
—including Cozzi and Impullitti (2010), Janeway (2012), Mazzucato (2013), Liu and Ma
(2021), Kantor and Whalley (2025), Antolin-Diaz and Surico (2025), Fieldhouse and Mertens
(2023), Dyevre (2024), Gomez-Cram et al. (2025), Fornaro and Wolf (2025)— focus on public
R&D, while Bloom et al. (2019), Akcigit et al. (2021), Akcigit et al. (2022), Dechezleprétre
et al. (2023), Cloyne et al. (2025) analyse tax incentives. We contribute to these efforts by
studying the medium-term consequences of government-funded innovation, linking different
federal agencies, industries, research fields, and institutional actors —such as universities,

research institutes, start-ups, VC-backed firms, and incumbents— to aggregate productivity.



Structure of the Paper. In Section 2, we describe the patent data and the empirical
framework to isolate independent movements in innovation activity. The main results across
the three patent groups are reported in Section 3, where we also provide back-of-the-envelope
estimates of the returns to public and private innovations as well as a sensitivity analysis to
alternative time-series strategies, including a narrative identificaton. In Section 4, we study
the relative disruptiveness of publicly vs. privately funded innovation. Next, we focus on fed-
eral agencies, industries, research fields, and innovation spillovers, which we use to shed light
on the mechanisms driving our results. In Section 6, we explore the role played by research
institutes, universities and companies in the business sector, paying particular attention to
start-ups and venture capital funding. Conclusions are in Section 7. The appendices contain

further details on the data, case studies, and an extensive set of robustness checks.

2 Data and Empirical Framework

This section outlines the data used in the empirical analysis as well as the econometric
framework that allows us to elicit its most salient correlations. After describing the primary
data sources, we summarize the main statistics of the three categories of innovations we focus
on, which combine information on public interest with the ultimate patent ownership. Then,
the section examines the role played by the different federal agencies in supporting public-
interest innovation. Finally, we discuss the time series approach and estimation strategies

that we use to associate government funds with macroeconomic outcomes.

2.1 Patents Classification by Government Interest

Our analysis draws on the Government Patent Register (GPR) database compiled by Gross
and Sampat (2025a), which combines information on government interest and the assignee for
each patent granted in the U.S. since 1890. The GPR defines three categories of patents based
on government involvement: i) patents that are funded by the government but developed and
assigned to a private entity, which we label public-private (“license” in GPR);! ii) patents

that are both financed and owned by a private entity, which we deem private-private; iii)

IMore specifically, by ‘private’ entity we mean a ‘non-federal’ organization.



patents that are funded and owned by the government, which we refer to as public-public
(“title” in GPR)?. The GPR also provides information on whether a federal agency funded
and possibly owned a patent. By combining information from multiple databases (Table 1
in Gross and Sampat, 2025a), the GPR reduces measurement errors arising from potential
non-compliance with government interest reporting requirements.” In Section 5, we explore
heterogeneity by funding agency.

Our analysis spans the period 1950-2015, due to data limitations. For instance, before
1950 only a small number of patents is available in the public-private category. Additionally,
some key macroeconomic aggregates that we use as controls start only in 1950 at the quarterly
frequency. Finally, patent registration delays mean that we cannot reliably extend the sample
beyond 2015. Throughout the paper, we consider the filing date as the relevant timing for
the patents as in Miranda-Agrippino et al. (2025). The filing date is the earliest available

indication of a patent’s existence and, hence, its use ameliorates concerns about anticipation.

Other Data Sources. We complement the GPR patent dataset with additional informa-
tion from several sources. We employ PatentsView to identify patent assignees’ characteristics
and draw on the measures of importance and of reliance on science, constructed by Kelly
et al. (2021) and Marx and Fuegi (2020, 2022) respectively, by patent category. These will
be exploited in Section 4 to evaluate any heterogeneity in the aggregate effects of highly
disruptive innovations. We complement these indicators with the measure of market evalu-
ation provided by Kogan et al. (2017) and extended to non-listed firms using the procedure
in Kline et al. (2019).

The USPTO Cooperative Patent Classification (CPC) Master Classification Files for U.S.
patent grants are used in the sectoral analysis. Information about startups and firms backed
by venture capital (VC) is available from Ewens and Marx (2024). For aggregate variables,
we rely on the data collected by Antolin-Diaz and Surico (2025). In Appendix A, we report

2«Title” or public-public patents are those that name a government agency as an assignee, meaning the agency owns a share
of the patent, often alongside other (private) entities

3The GPR contains a residual category marked as “unknown”, primarily arising from multiple records with discordant
government-interest information. The size of this group increased after 1980, due to the introduction of digital records and
the adoption of the Bayh—Dole Act. To categorize patents in this residual group, we apply a straightforward strategy: any
indication of a license right for the government or any involvement of private parties in the innovation’s development signals
joint public-private efforts; the remaining cases are classified as public-public. In Appendix A, we provide further details on the
procedure we follow to impute the unclassified cases, along with a more detailed description of the GPR database. Our main
results are unaffected if we exclude these ambiguous cases from the analysis.

4 Although the GPR database covers years up to 2020, the number of patents after 2015 drops due to registration delays.



detailed information on data sources and variables construction.

2.2 Descriptive Statistics

The GPR database covers more than 7 million granted patents in our sample. The vast
majority belongs to the private-private category (Table 1, Panel A). Patents with no public
interest account for about 97% of total patents. Among the rest, 2% have been funded by a
federal agency but are owned by the private sector (i.e. public-private), while the government
funds and owns the remaining 1%. The dynamics of each group over time highlight that the
number of public-public patents has remained relatively stable throughout our sample (Figure
1, Panel A).

The patents assigned to public-private or solely private display an upward time trend,
which partly reflects legislative changes. Enacted to encourage the commercialization of in-
ventions arising from federally funded research, the Bayh—-Dole Act of 1980 introduced a
uniform patent licensing policy across federal funding agencies under which small businesses
and non-profit institutions could retain ownership of patents that benefited from public fund-
ing while the government retained a license for use. This primarily affected innovations de-
veloped by research institutes and universities, some of which may have been classified as
public-public rather than public-private without the Act. Our main findings are not qualita-
tively affected if we obviate the changes introduced by the Act and pool all publicly-funded
patents into a single specification (see Appendix B). Moreover, our analysis of non-profit
private sector innovation (Section 6) begins in 1976, meaning that our sample consists pre-
dominantly of post-Act observations. Moving to shares, we observe that the incidence of
solely public patents has been progressively falling over time (Figure 1, Panel B), while the
proportion of public-private patents has stayed roughly constant with only mild variations
over the years. In 1995, the number of patent applications surged due to a major legislative
change: the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS).”

The importance measure proposed in Kelly et al. (2021) weights positively (negatively) the
forward (backward) similarity of a patent. The intuition is that a patent is more disruptive

and groundbreaking whenever it differs more from previous patents but influences more

5In Appendix B, we show that our results are unaffected when we control for this and other major institutional patent events.



Figure 1: The Evolution of Patenting Activities by Funding Entities and Ownership
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Table 1: Descriptive Summary of Patent Types and Importance

Panel A: Publication Type Breakdown

Priv—priv Pub—pub Pub-priv
Number of Patents 7,000,953 76,601 139,191
Share of Total 97.0% 1.1% 1.9%

Panel B: Importance by Public Interest Type

Statistic Priv—priv Pub-pub Pub-priv
Median 0.17 0.15 0.18
Skewness 0.91 1.59 1.50
Kurtosis 7.49 11.78 11.56

Panel C: Reliance on Science

Statistic Priv—priv Pub-pub Pub-priv
Mean 2.67 3.85 23.15
Median 0.00 0.00 3.00
75th percentile 1.00 1.00 25.00
90th percentile 4.00 7.00 70.00
95th percentile 10.00 19.00 107.00

Panel D: Agency Breakdown

Agency Patents  Pub-—pub share Pub—priv share
Department of Defense 106,574 43.0% 55.1%
National Institutes of Health 47,830 10.4% 84.0%
Department of Energy 35,439 37.6% 60.5%
National Science Foundation 14,670 ~0% 93.8%
NASA 12,869 56.1% 36.8%

Panel E: Government Interest by Assignee Type

Assignee type Patents Pub-share Share of govt-funded
Research institutes 153,956 8.7% 8.4%
Universities 90,785 52.9% 30.1%
Start-ups 131,572 1.5% 1.2%
VC-backed assignees 410,959 1.6% 4.1%
Federal agencies 42,147 100.0% 26.4%

Note: Panel A is the patent distribution of the government interest classification in the GPR database of Gross and Sampat
(2025a). Panel B shows the importance distribution in Kelly et al. (2021) by patent category. Panel C shows the reliance on
science distribution in Marz and Fuegi (2020, 2022) by patent category. Panel D reports the distribution of public interest
patents across main federal agencies; the last two columns do not sum to 100 due to a small group of patents that Gross and
Sampat (2025a) leave ‘unclassified’. Panel E reports for the sample 1975-2015 the total number of patents produced by entity
types, together with the shares of government-funded patents within each assignee type (Pub-share) and their (%) contribution
to the number of total government-funded patents (Share of govt-funded; they do not sum to 100 because not all possible actors
are included). Government-funded patents in Panel E include both pub-pub and pub-priv. Data on startups and venture capital
is available since 1975 from Ewens and Marz (2024).
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future patents. In Panel B of Table 1, we report that public-private patents tend to be
more disruptive that private-private ones, followed by public-public patents. However, their
distribution reveals that the importance of public interest patents is heavily skewed to the
right and is leptokurtic. In Panel C, we report summary statistics for the number of scientific
publications cited in each patent group, which Marx and Fuegi (2020, 2022) propose as a
measure of reliance on science. Publicly funded innovations emerge as the most exposed to
academic publications along the whole distribution, especially at the top end. These patterns
are consistent with the notion that the government typically funds research that is more basic

or fundamental relative to the research financed and developed solely by the private sector.

Figure 2: Patents Importance and Reliance on Science
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Note. The barchart displays the share of public interest patents across different levels of importance from Kelly et al. (2021)
and across different levels of reliance on science, measured by the number of citations of scientific papers from Marz and Fuegi
(2020, 2022). The bottom bar reports the unconditional share of public patents to total patents. Sample: 1950:Q1-2015:Q4.

In Figure 2, we examine the composition of disruptive innovations. Publicly funded
patents—whether owned by the public sector (orange and yellow) or the business sector (blue
and green)—represent only about 3% of all patents, but their share rises sharply among the
most disruptive ones. Government-funded patents account for over 4% (14%) and 7% (20%)

of the top 5% and top 1% most disruptive patents, respectively, based on Kelly et al. (2021)’s
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importance indicator (Marx and Fuegi, 2020, 2022,’s reliance on science).® Among the top
0.1% of the disruptiveness distribution, the share approaches 15%-20%, largely driven by
public—private patents. In Section 4, we show that more disruptive patents are associated
with larger subsequent increases in GDP and TFP, especially among innovations funded and
owned by the government.

Focusing on public interest patents in Panel D of Table 1, we report the breakdown by
five key federal agencies. In the first column, we note that the Department of Defense (DoD)
has played the leading role in terms of absolute number of public-interest patents, followed by
the National Institutes of Health (NIH, within the Health and Human Services Department),
the Department of Energy (DoE), the National Science Foundation (NSF), and the National
Aeronautics and Space Administration (NASA). These agencies, however, display marked
heterogeneity in their patenting composition. The innovations of most federal agencies tend
to be associated with a majority of private ownerships with government funds. NASA, DoD
and —to a lesser extent— DoE display a much higher share of public-public patents, while
the NIH and the NSF mainly fund innovations that are eventually developed outside the
federal government.

As revealed by Panel C of Figure 1, the share of public patents that are funded by DoD
fell from nearly 100% in 1950 to 20% in 2015. Conversely, the NSF and especially the
NIH (HHS) have played an increasingly central role since the 1970s, followed by the DoE.
Furthermore, patents funded by NASA have increased between the 1960s and 1980s, as a
result of the Moonshot race with the USSR; since the 1990s, however, they have started to
play an increasingly minor role. In Appendix C, we provide more statistics on public patents
and present examples of government-funded but privately developed innovations.

Finally, in Panel E of Table 1, we describe the data employed in Section 6. We combine
information on government funding, both for private and public ownerships, with the patents’
assignee type, including research institutes, universities, startups, and venture capital-backed
companies. Within each assignee type, (under the heading ‘Pub-share’), more than half of
university patents are funded by the government; this share drops to about 9% for research

institutes and sits around 1.5% for startups and venture capital companies. On the other

6This share rises to nearly 10% among the patents that Kelly et al. (2021) narratively identify as historically important—a
threefold increase relative to their share in the full sample.
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hand, universities and federal agencies are the main contributors to the total number of
government-funded patents (in the ‘Share of govt-funded’ column), which is far higher than

the shares for research institutes, VC-backed firms, and startups.

2.3 Time-series Approach

Our goal is to provide novel macroeconomic correlations between GDP, aggregate produc-
tivity and innovation originating from (i) public-private, (ii) private-private, and (iii) public-
public patents. To achieve this, we use local projections (LP; Jorda, 2005) and a rich set of
controls that could otherwise confound the association between patent activity and macroeco-
nomic conditions (Miranda-Agrippino et al., 2025). In our baseline specification, we estimate

a set of regressions for each horizon h:

ApYirn = o + Brxy + Yp Wi + Up, h=0,1,...H (1)

where Apyiin = Yean — Y1 is the outcome of interest expressed in long difference to mitigate
the small sample bias in LPs (Jorda and Taylor, 2025), « is a constant, x; is the number of
granted patents that are filed in quarter ¢ for each of the three categories, and [, captures
the dynamic effects of our driving variable or the Impulse Response Function (IRF) at the
horizon h. The vector w; contains a set of controls, including four lags of v, x;, as well as
GDP, TFP, investment, stock prices, the T-bill, R&D spending, and the number of patents
filed in the other groups. These variables capture the business cycle, expectations on future
economic conditions, and monetary policy, among others. As developing innovations takes
time, the information set spanned by the lags of our rich set of controls helps us to isolate
unanticipated changes in x;.

In Table 2, we test for any possible remaining endogeneity in our implicit shock ¢, = x; L
we.” First, we reject the null that our set of controls do not predict z;, thereby validating our
choices of variables. Second, using the test for sufficient information proposed by Forni and
Gambetti (2014), we cannot reject the orthogonality of €; to neither forecasters’ projections

nor to the macroeconomic shocks identified by early contributions on government spending

"In the words of Montiel Olea et al. (2025): “In an LP, we are estimating impulse responses with respect to a shock that is
defined as the residual from projecting the impulse variable on the control variables.”

13



(Ramey and Zubairy, 2018), taxes (Romer and Romer, 2010; Mertens and Ravn, 2013) and
monetary policy (Romer and Romer, 2004).® In Panel A, we report the results of these tests;”
in Panel B, we repeat the same exercise by agency. In Appendix B1, we further show that
—unlike R&D expenditures— patent applications are virtually a-cyclical, thereby fulfilling

our desire of using a driving variable that is unrelated to business-cycle conditions.'”

Table 2: The Sufficient Information Test of Forni and Gambetti (2014).

Panel A: p-values from F-test of joint significance — by patent type

Test for controls’” explanatory power Test for implied patent shocks’ orthogonality
Variable (i) LP specification (ii) Military spending shocks (iii) All shocks (iv) SPF (v) Shocks + SPF
Total patents 0.001 0.897 0.976 0.154 0.384
Private-private 0.001 0.834 0.976 0.164 0.402
Public-private 0.008 0.507 0.996 0.580 0.909
Public-public 0.038 0.787 0.564 0.766 0.614

Panel B: p-values from F-test of joint significance — by agency

Test for controls” explanatory power Test for implied patent shocks’ orthogonality
Variable (i) LP specification (ii) Military spending shocks (iii) All shocks (iv) SPF (v) Shocks + SPF
DoD 0.000 0.514 0.558 0.598 0.182
NASA 0.167 0.498 0.895 0.098 0.825
NIH 0.014 0.557 0.809 0.270 0.771
NSF 0.638 0.310 0.409 0.175 0.318
DoE 0.161 0.237 0.682 0.942 0.587

Note. Column (i) reports p-values for the F-test of joint significance on the coefficients associated to the set of controls
Sfrom our baseline local projection model, excluding patents’ own lags and the constant. Columns (ii)—(v) report p-values from
an orthogonality test where the implied shocks €+ are regressed on external information. “Military spending shocks” are from
Ramey and Zubairy (2018). “All shocks” also include the monetary policy shocks of Romer and Romer (2004) updated using
Coibion et al. (2017), personal and corporate income tax changes from Mertens and Ravn (2013) following Romer and Romer
(2010). SPF stands for Survey of Professional Forecasters: one- and four-quarter-ahead forecasts for the unemployment rate,
the GDP deflator, real non-residential investment, and real corporate net profits, as in Miranda-Agrippino et al. (2025).

Our baseline estimates rely on conditional correlations between GDP, TFP, and innovation,
controlling for key macroeconomic dynamics. This approach is intentionally transparent and
easy to interpret. Yet, to ensure that our findings are not driven by this specific choice, we
assess their robustness using several state-of-the-art time-series strategies. In Section 3.1, we
presents the baseline results; in Section 3.2, we show that these remain virtually unchanged
when we employ leading approaches from the applied macro-literature, including the narrative

identification of Romer and Romer (1989, 2010) and Ramey and Shapiro (1998), the max-

8We employ an extension of the monetary policy series until 2007 from Coibion et al. (2017).
9We cannot reject the orthogonality of €4 also to factors extracted from the FRED-QD database.

10We employ LPs rather than VARs as baseline model because we are interested in studying the medium-run effects of
perturbations that exert delayed effects. In this setup, the extrapolation of VAR of the first autocovariance moments in the data
may lead to severe biases (Plagborg-Mgller and Wolf, 2021; Montiel Olea et al., 2025), although in Section 3.2 we will verify
that our baseline estimates are not overturned using a VAR. Inference is based on Newey and West (1987) standard errors.
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share variance of Uhlig (2003), and the long-lag BVAR in Antolin-Diaz and Surico (2025).

3 Main Results

Bush (1945a) envisioned a research architecture built on three pillars: (i) fostering public—
private collaboration, (ii) using government funding to spearhead fundamental research, and
(iii) leveraging universities and research institutes to deliver major innovation breakthroughs.
In this section, we examine the macroeconomic consequences of the first two pillars on out-
put and productivity, and quantify their contributions to aggregate fluctuations and TFP
growth. We return to the third pillar in Section 6, where we analyze the role of different
innovation actors, including universities, research institutes, start-ups, and VC-backed firms.
Section 3.1 presents our baseline conditional correlations, controlling for possibly confound-
ing macroeconomic factors, while Section 3.2 shows that the results remain robust across a
range of state-of-the-art time-series identification strategies, including a narrative approach

that isolates legislative changes in patenting unrelated to economic conditions.

3.1 Baseline Conditional Correlations

In this section, we estimate the dynamic association between an increase in innovation activity
and major macroeconomic variables, such as GDP, TFP, and R&D expenditure. Furthermore,
we are interested in finding out whether patenting correlates with capital investment in the
business-sector, the stock market and standards of living, as measured for instance by wages
and consumption.

To investigate the macroeconomic role of patents that are funded by the government but
owned by private organizations and compare it with innovation driven only by the private or
the public sector, we use the categorization in Section 2. The first column of Figure 3 records
the responses of GDP, TFP (top two rows) and innovation activity (bottom two rows) over
a 10 year horizon to an increase in public-private patents, while the second (third) column
refers to their private-private (public-public) counterpart. Shaded areas represent 68% and
90% confidence bands. Given the sheer difference in group sizes, we normalize the shocks

across specifications so that each corresponds to a 1% rise in total patents on impact.

15



Four main results emerge from Figure 3. First, public-private patents (first column) are
characterized by the largest medium-term impact on both output (first row) and produc-
tivity (second row). The effects are delayed, consistent with the slow pace that is typically
associated with the process of knowledge diffusion, and highly significant, with peaks around
0.2% after 8 to 9 years. Second, while private sector innovations (second column) also have
a statistically significant influence, their effects on GDP and TFP tend to be smaller and do
not exceed 0.1%."

In addition, the third column of Figure 3 reveals that, on average, patents funded and
owned by the public sector fail to have any significantly positive impact. In the next section,
however, we will show that this average effect masks pervasive heterogeneity: the most
disruptive patents in the government-government group are associated with the largest effects
on GDP and TFP. Fourth, government-private innovations are associated with the most
significant increase in private R&D (third row) and total patents (last row), with a peak
around 0.5%."?

In Figure 4, we explore the relation of innovation with the broader economy. Interest-
ingly, the ‘ranking’ of patent categories from Figure 3 is confirmed when we look at macro
outcomes for firms (Panel A) or households (Panel B) in Figure 4. Panel A shows that a
temporary increase in total patents driven by private ownership with public funding is linked
to a subsequent expansion of private investment (first row) and a significant stock market ap-
preciation (second row). In contrast, we find small and insignificant spillovers to investment
from private-sector innovations in the second column, despite a sizable aggregate response of
stock prices.

As for living standards in Panel B, it is also the case that only public-private partnership
are associated with large, persistent and highly significant correlations with real wages (third
row) and real consumption (fourth row). This contrasts with the smaller and less persistent
trace of solely private innovation (second column) and the insignificant average association

with patents funded and owned by the public sector (third column).

U Two statistical tests (Sup-Wald and Cramér-von Mises, both based on bootstrap) reject the null of equal estimated effects
of government-private versus private-private innovations on GDP and TFP. In Appendix B2, we explicitly report the difference
of IRFs across the two patent groups, which is economically sizable and highly statistically significant for both GDP and TFP.

12We obtain very similar results for total patents when, in each specification, we exclude patenting activity in the other two
categories. Moreover, we find that government-funded but privately owned innovations are associated with the largest increase in
total patents over a ten-year horizon, even when weighting by the importance measure of Kelly et al. (2021): so, the interaction
between public funding and private ownership is linked to gains in both the quantity and quality of subsequent innovation.
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Figure 3: The Dynamic Effects of Innovation
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Note. The figure displays the dynamic effects of innovation shocks in each category of patents (public-private, private-private,
public-public; by column) on (log) real per-capita private GDP and (log) TFP (panel a) and (log) real per-capita private R€D
and (log) patents (panel b; by row). The estimation by local projections follows eq.(1). The size of the shock is normalized
such as to increase total patents by 1% on impact. The set of controls includes four lags of the patent group shocked and the
dependent variable, real per-capita GDP, TFP, real per-capita investment, real stock prices, the T-bill, real per-capita R€D
expenditure, and the number of patents in other groups. All variables except the T-bill are in logs. The solid line represents
the point estimate, while the shaded areas report 68% and 90% confidence intervals computed from Newey and West (1987)
standard errors. Sample: 1950:Q1-2015:Q4.
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Figure 4: The Dynamic Effects of Innovation on Firms and Households

(a) Investment and Stock Prices
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Note. The figure displays the dynamic effects of innovation shocks in each category of patents (public-private, private-private,
public-public; by column) on (log) real per-capita private investment and (log) real stock prices (panel a) and (log) real wages
and (log) real per-capita consumption (panel b; by row). The estimation by local projections follows eq.(1). The size of the
shock is mormalized such as to increase total patents by 1% on impact. The set of controls includes four lags of the patent
group shocked and the dependent variable, real per-capita GDP, TFP, real per-capita investment, real stock prices, the T-bill,
real per-capita RED expenditure, and the number of patents in other groups. All variables except the T-bill are in logs. The
solid line represents the point estimate, while the shaded areas report 68% and 90% confidence intervals computed from Newey
and West (1987) standard errors. Sample: 1950:Q1-2015:Q4.



3.2 Alternative Time-series Approaches

In the previous section, we estimated the dynamic correlations between different categories
of innovation activity and macroeconomic indicators using local projections and OLS. To
mitigate concerns about confounding factors and reverse causality, we dated innovations by
the time of application (rather than grant) and augmented the specification with a rich
set of aggregate controls, including lags of GDP, TFP, investment, stock prices, short-term
interest rates, and R&D spending. While this approach ensures transparency, the time-series
literature offers several alternative methods to isolate the unanticipated component of the
driving variable. In this section, we implement ten such approaches, beginning with one of

the most widely used in applied macroeconomics: the narrative identification.

Narrative Identification. A long-standing tradition in macroeconomics—originating with
Friedman and Schwartz (1963) and revived by Hamilton (1985), Romer and Romer (1989),
Romer and Romer (2010), and Ramey and Shapiro (1998)—relies on examining policymak-
ers’ stated motivations around major pieces of federal legislation and treating as “exogenous”
those changes not driven by current or anticipated economic conditions. Following this ap-
proach, we identify large swings in patent filings around key legislative events and, based
on a systematic reading of their underlying motivations, construct an instrument capturing
quarterly percentage changes in patent applications induced by institutional events unrelated
to the economy.

In Figure 5a, we use the narrative instruments described above to compute LP-IV esti-
mates as described in Stock and Watson (2018)."* Further details on the construction of the
instruments and the classification of major legistative events are provided in Appendix D.
The results show that government-funded but privately owned patents generate the largest
increases in GDP and TFP, with peaks at about 0.2% and 0.15%, respectively. Fully private
innovations also raise aggregate productivity and output, though to a lesser extent, while
fully public patents exhibit insignificant and imprecise responses. Overall, the magnitude
and significance of the LP-IV estimates closely mirror the OLS results in Figure 3, consistent

with Appendix B1 showing that patent applications are virtually a-cyclical.

13The robust first-stage F-statistics are 786 for government-private, 510.5 for private—private, and 28.4 for government-
government patents, thereby exceeding conventional thresholds for weak instruments.
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Figure 5: Sensitivity Analysis
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Note. Panel (a) displays the dynamic effects of innovation shocks identified through a narrative LP-IV approach in each
category of patents (government-private, private-private, government-government; by column) on (log) real per-capita private
GDP and (log) TFP. The solid line represents the point estimate, while the shaded areas report 68% and 90% confidence
intervals respectively, computed from Newey and West (1987) standard errors. Panel (b) displays the point estimates from ten
alternative time series approaches. The size of the shock is normalized such as to increase total patents by 1% on impact.
The set of controls includes four lags of the patent group shocked and the dependent variable, real per-capita GDP, TFP,
real per-capita investment, real stock prices, the T-bill, real per-capita RE€D expenditure, and the number of patents in other
groups. All variables except the T-bill are in logs. Sample: 1950:Q1-2015:Q4. Grey lines indicate impulse responses that are
statistically insignificant at conventional level for the vast majority of forecast horizons.
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Alternative Strategies. We next assess the robustness of our results across a range of
alternative time-series approaches. Figure 5b reports point estimates from ten specifications:
(i) Narrative LP-IV (baseline, as in Figure 5a); (ii) Categorical LP-IV, which uses the same
events but only the sign of changes, as in Ramey and Shapiro (1998); (iii) Narrative LP-IV
(no Bayh-Dole) and (iv) Narrative LP-IV (no TRIPS), which exclude the Bayh-Dole Act and
TRIPS, respectively; (v) Max-share VAR, identifying the innovation shock that explains the
largest share of forecast error variance in patenting over a two-year horizon using a VAR(12),
following Uhlig (2003);'" (vi) LP with TRIPS dummy; (vii) LP with legislative dummies,
which include dummies for four major legislative events; (viii) Standard VAR (12 lags), with
a Cholesky factorization; (ix) LP with factors, adding the first two principal components
from the FRED-QD database as controls; and (x) BVAR with long lags, a 40-lag Bayesian
VAR with priors specified as in Antolin-Diaz and Surico (2025).

Across all ten specifications, the results consistently point to a strong and persistent medium-
term association between aggregate productivity and innovation funded by the government

but owned by the private sector, with smaller macroeconomic effects for fully private patents.

3.3 Contribution to Aggregate Fluctuations and Economic Growth

In the previous sections, we have shown that public—private patents generate innovations most
strongly associated with medium-term movements in macro variables. We now quantify the
contribution of unanticipated surges in government-funded but privately owned patenting to
aggregate fluctuations and economic growth. To this end, we conduct two decomposition
exercises. Using the R? approach for local projections proposed by Gorodnichenko and Lee
(2020), we assess how much these shocks contribute to the h-period-ahead forecast errors of
output and productivity growth. First, we compute the forecast error variance decomposition,
which measures the share of forecast variance explained by each shock at each horizon.
Second, within the same framework, we perform a historical decomposition of TFP growth
at an eight-year horizon (h = 32), capturing the contribution of these shocks to the medium-

term component of productivity growth. Eight-years is standard for filtering beyond business-

14This approach generalizes the Cholesky decomposition that is implicitly behind our baseline LP specification (Ramey, 2016).
The Cholesky factorization restricts the shock to explain the entire conditional variance on impact; the max-share relaxes this.
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cycle frequencies.”

In Figure 6, we record the share of the forecast error variance for GDP (top row) and TFP
(bottom row) explained by each innovation shock. Solid lines stands for point estimates, while
shaded areas refer to 68% (darker) and 90% (lighter) confidence intervals. Three conclusions
can be drawn from this decomposition exercise. First, public-private innovation shocks in the
left column account for about 20% of the medium-term variance of GDP and TFP growth, but
explain little of their short-term fluctuations. Second, private patents in the middle column
tend to make a smaller contribution, which peaks at business-cycle frequencies. Third, the
share of variation explained by fully public patents in the right column seems negligible at
all forecast horizons.

In Figure 6 Panel B, we identify a prominent role over the medium-term for innovation
shocks to patents that are publicly funded and privately owned. We investigate the extent
to which these shocks explain low-frequency movements in the TFP growth rate presenting
a historical decomposition for A = 32.'° The main take away is that innovations funded by
the government and developed by the private sector move together with some of the major
swings in the medium-term component of productivity growth during the post-WWII period.
In particular, our estimates suggest that the ‘prosperous’ 1950s, the ‘roaring’ 1990s and the
diminished business dynamics of the 2000s may have originated, at least partially, in the
rise and fall of innovations coming from public-private collaborations. In Appendix E2, we
calculate that if the medium-term contribution of government-private innovations during the
2000s had counterfactually continued at the same pace of their 1990s peak, then the level of
TFP in 2007 would have been between 5.4% and 10% higher than it actually was.'”

3.4 Returns to Innovation: a Back-of-the-Envelope Calculation

So far, we have shown that publicly funded and privately owned innovation produces signif-

icantly larger effects than patents funded and developed privately. Our estimates, however,

15 Appendix E provides details on the procedure. To our knowledge, this is the first application of LP methods to estimate
and generalize historical decompositions across horizons. Appendix Figure E1 repeats the analysis for h = 6, showing that
public—private innovation shocks contribute modestly to short-term TFP growth.

16The historical decomposition combines the shocks implied by our local projection model with the estimated dynamic impulse
response effects to compute the contribution of the shock to movements in the endogenous variables. We follow the approach by
Gorodnichenko and Lee (2020), which was originally designed for the estimation of the forecast error variance in local projections,
and adapt it to compute the historical decomposition.

17Qur findings therefore complement existing explanations for the 2000s diminished business dynamism and the post-2005
productivity slowdown such as the rise in intangible inputs put forward by De Ridder (2024).
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Figure 6: Forecast Error Variance Contribution and Historical Decomposition
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Note. Panel (a) displays the forecast error variance contribution of innovation shocks in each category of patents (public-private,
private-private, public-public; by column) on (log) real per-capita GDP expenditure and (log) TFP (by row). The estimation
by local projections is based on the R? method in Gorodnichenko and Lee (2020). The solid line represents the point estimate,
while the shaded areas report 68% and 90% confidence intervals. Panel (b) displays the historical contribution of public-private
innovation shocks to the medium-term component of the TFP growth rate (data as solid black line). The purple line (bands)
represents the point estimate (68% and 90%) contribution of the public-private innovation shocks. The estimation by local
projections is also based on the econometric framework in Gorodnichenko and Lee (2020). Inference is based on 2000 bootstrap
replications with small-sample adjustment. Sample: 1950:Q1-2015:Q4.
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do not yet provide a readily available measure of the returns to public and private innovation,
as the shocks are not scaled in monetary units and we do not directly observe the costs of
producing innovation.

To deliver a back-of-the-envelope estimate of the returns to innovation, we proceed in three
steps. First, we calculate a measure of the average real dollar cost of privately and publicly
funded patents, respectively. We do so by taking the ratio between the cumulative real R&D
expenditure and the count of patents in each sector over the full sample. Since the available
data do not allow us to separately attribute government R&D expenditures to different
categories of publicly-funded patents, for this exercise, we group together all government-
funded patents, independently from ownership. Using national accounts measures of private
and government R&D expenditure, deflated by the GDP deflator, we find that the historical
average real cost of a publicly funded patent is $25.1 million of USD versus $0.82 million for
the private sector.

Second, we rescale the estimated IRFs to express the real-dollar responses of GDP and

% We then com-

R&D to a shock that generates one additional patent in each category.
pute back-of-the-envelope multipliers by dividing the discounted responses of GDP and pri-
vate R&D—averaged over forty quarters—by the estimated per-patent cost. Because patent
shocks are dated at the time of application, we apply an additional time discount to account
for the lag between R&D spending and patenting. Empirical estimates suggest a lag of 5 to
20 years (Hausman et al., 1984; Li et al., 2017; Wang and Hagedoorn, 2014; Dyevre, 2024),
which we use below.

In Table 3, we present our back-of-the-envelope calculations. The rows refer to privately-
funded and government-funded innovation, respectively. The first column reports the average
cost per patent. The following four columns summarize the GDP returns, assuming a lag
between R&D spending and patent filing varying from 5 to 20 years. The last four columns

measure the spillovers of private innovation and government-funded innovation onto business-

sector R&D. Below each point estimate, we report 68% confidence bands.

Three main results emerge from Table 3. First, on average, government-funded patents

are characterized by far larger cost. Second, for every dollar of taxpayers’ money invested in

181n Appendix Figure B4, we obtain very similar results when we pull all government-funded patents into a single group.
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Table 3: Returns to Innovation: a Back-of-the-Envelope Calculation

GDP RETURN

PRIVATE R&D RETURN

Ré&D—patenting lag RéED—patenting lag
funding source | cost per patent 5y 10y 15y 20y 5y 10y 15y 20y
. 6.92 5.69 4.68 3.84 043 0.35 0.29 0.24
private 0.82M$
[1.5,12] [1.3,10] [1.0,8.3] [0.9,6.8] [.22,.64] [18,.52] [.15,.43] [.12,.35]
144 119 9.74 8.01 1.03 0.84  0.69 0.57
government 25.1M$
[8.1,21] [6.6,17] [5.4,14] [4.5,12] [67,1.4] [.55, 1.2] [45,.94] [.37,.77]

Note: returns to private innovation and to public innovation are measured as the average real dollar increases in GDP or Private
RE&D (evaluated at the end of the sample period) between 1 and 40 quarter horizons per dollar of R€D expenditures, calculated
by dividing the cumulative discounted response by the unit cost of patents. The RED patent lag is the delay in years between
R&D investment and patent filing. Each entry in the table is computed as ﬁ Z?LO:I AXﬁi'“C/Cost per patent, where Xfllisc is
the discounted IRF at horizon h of either GDP or Private RéD, AX,‘fiSC =AX, (14 r)_(L+h/4), and L € {5,10,15,20} is the

Ré&D-patent lag. All values are discounted at an annual real rate of 4%. Numbers in brackets show 68% confidence intervals.

innovation, the U.S. economy expands between 8 and 14 dollars (second row). In contrast,
the returns from private patents (first row), while still sizable, are smaller than their public
counterparts, between 3.8 and 6.9 dollars. Third, government-funded patents generate sig-
nificantly larger spillovers than private innovation, with R&D returns between 57 and 103
cents for every dollar of government funds. Interestingly, the R&D returns in Table 3 are
consistent with the firm-level evidence reported by Bloom et al. (2013) and Dyevre (2024)
for the U.S., by Bergeaud et al. (2025) for France, and by Leicester et al. (2024) for the U.K.,
using different methods.

In summary, although government-funded patents cost an order of magnitude more than
private-sector patents, our back-of-the-envelope estimates seem to suggest that, per dollar
spent, they generate over twice the spillovers to business R&D and more than double the

impact on GDP relative to fully private innovations.

4 'The Macroeconomic Impact of ‘Basic’ Innovation

In Section 3, a clear ranking emerged across patent categories: the macroeconomic effects

of innovation publicly funded and privately owned are more significant, both statistically
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and economically, than those generated fully within the private sector, which in turn are
larger than those produced by the public sector only. In this section, we aim to examine the
distribution of patents within each sector in order to identify more disruptive and fundamental
research for each category.

The notion of importance or fundamentalness relates to the concept of “basic” research
emphasized by Bush (1945a) and the innovation literature. As the classification of ‘basic’
research in R&D expenditure data is ultimately subjective and thus exposed to significant
measurement errors, in this section, we rely on two complementary indicators based on
patents: i) the measure of ‘importance’ developed by Kelly et al. (2021), and ii) the measure
of ‘reliance on the science’ constructed by Marx and Fuegi (2020, 2022). In Section 5, we
will zoom on federal agencies such as NIH and NSF, while in Section 6, we focus on research
institutes and universities. Each dimension (i.e. text similarity, citations of scientific papers,
agencies and players) covers a different aspect of “basic” research and together paint a fuller
picture of its contribution.

As discussed in Section 2, the measure of importance or fundamentalness in Kelly et al.
(2021) is a function of both forward and backward patent similarity, with the former (latter)
receiving a positive (negative) weight in the importance measure. Accordingly, a patent
with high textual similarity to later patents, relative to its similarity to preceding patents,
is considered more disruptive. The intuition for the metric developed by Kelly et al. (2021)
is that pathbreaking innovations are more likely to move away from existing knowledge (i.e.
less backward similarity) and are also more likely to influence future knowledge (i.e. more
forward similarity)."

Given this background, in Panel A of Figure 7, we divide each patent category into two
additional groups: top 25% (blue solid lines) and bottom 75% (orange dashed lines), using
the measure of importance in Kelly et al. (2021).?° Three major results emerge. First, as
expected, the top 25% most disruptive patents in each category have a larger impact on GDP

and TFP than the bottom 75%, with the gap between sub-groups in each category that tends

19A main reason to favor the measure of Kelly et al. (2021) over Kogan et al. (2017) is that the latter only refers to patents
owned by listed firms and thus excludes government-owned patents. In Section 6, we show that the most impactful innovations
are owned by research institutes, universities, start-ups and VC-backed firms, which are unlikely to be listed. For robustness
and sake of completeness, in Appendix F3, we show that similar results are obtained using as indicator of importance the patent
value metric in Kogan et al. (2017) extended beyond listed firms following the strategy proposed by Kline et al. (2019).

20We use the five-year window for patent similarity in Kelly et al. (2021) by category in the whole sample. We obtain similar
results employing the ten-year window instead. The ranking is computed in every year and across all categories.
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Figure 7: The Dynamic Effects of the Most Important and Reliant on Science Innovations

(a) Importance
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Note. Panel (a) represents the dynamic effects of innovation shocks to the top quartile of patents ranked by the Kelly
et al. (2021) five-year patent similarity measure versus other patents in each category of patents (public-private, private-private,
public-public; by column) on (log) real per-capita GDP and (log) utilization-adjusted TFP (by row). Panel (b) displays the
results of the same exercise performed by using the reliance on science measure by Marz and Fuegi (2020, 2022). The estimation
by local projections follows eq.(1). The size of the shock is normalized such as to increase total patents by 1% on impact. The
set of controls includes 4 lags of the patent group shocked and real per-capita GDP, TFP, real per-capita investment, real stock
prices, the T-bill, real per-capita RED expenditure, and the number of patents in other groups. All variables except the T-bill
are in logs. The solid blue (dashed orange) line represents the point estimate for top 25% (bottom 75%) important or top 10%
(bottom 90%) reliant on science patents, respectively. The corresponding shaded areas report 90% confidence intervals computed
from Newey and West (1987) standard errors. Sample: 1950:Q1-2015:Q4.
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to grow with the forecast horizon. Second, patents funded and owned by the government,
in the last column, are characterized by the most striking heterogeneity, with the top 25%
most disruptive patents in this category associated with the largest medium-term effects on
output and productivity in the whole economy. Third, in sharp contrast, the bottom 75% of
least important patents has small and insignificant traces, which turn even negative in the
case of public-public innovation. In summary, patents that are funded and owned by the
government represent a relatively higher share of the most disruptive innovations in terms of
medium-term impact on GDP and TFP. In Appendix C2, we provide examples of patents in
each category.

The indicator of reliance on science by Marx and Fuegi (2020, 2022) captures the number
of scientific paper citations contained in a patent. Patents citing more scientific articles are
thus considered more science-based, providing a proxy for the “basicness” of the underlying
research. Panel B of Figure 7 replicates the exercise in Panel A by splitting patents into those
with high- versus low-scientific reliance (i.e. top decile versus bottom 90%). According to this
measure, correlations with GDP and TFP are somewhat stronger among the most science-
based patents for both government—private and private—private collaborations. Furthermore,
and consistent with the main result in Panel A, the heterogeneity is most pronounced for
fully public innovations (in the third column): patents more reliant on science are associated
with the largest increases in TFP and GDP growth. By contrast, the remaining 90% of less
science-based patents appear largely inconsequential for GDP, and even negatively associated
with productivity.

Finally, in Appendix Figure F4, we show that the strong positive association between
macroeconomic outcomes and the most fundamental fully public innovations remains robust
when we adopt a 2575 percentile split of the ‘reliance on science’ measure proposed by Marx
and Fuegi (2020, 2022). With this more balanced cutoff, the heterogeneity across the other
two patent groups becomes less pronounced, possibly reflecting a more even distribution of
this measure within each group relative to the importance index developed by Kelly et al.
(2021) (see also the statistics in Table 1). In Appendix Figure F5, we further corroborate
these findings by comparing —within each group— patents that cite at least one scientific

publication to those that cite none, obtaining qualitatively similar results.
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5 On the Mechanism

In the previous sections, we have documented a prominent role for publicly-funded /privately-
owned innovations in driving productivity and prosperity in the post-WWII U.S. economy,
with a significant crowding-in of business investment and R&D. In this and the next section,
we explore the mechanisms through which these dynamics have unfolded. More specifically,
this section focuses on federal agencies, industries, research fields, innovation spillovers, and
networks. In the next section, we quantify the contributions of the different players, including

research institutes and universities, start-ups, and VC-backed companies.

5.1 Federal Agencies and Industries

The innovation architecture designed by Bush (1945a) led to the establishment of the Na-
tional Science Foundation (NSF) in 1950 and to a sizable expansion of the National Institutes
of Health from 1947. Together with other federal agencies, Bush (1945a) believed this was the
primary mean through which government should support ‘basic’ research in colleges, univer-
sities and research institutes.”! In this section, we group public patents by five main federal
agencies or departments: NIH, NSF, NASA, Department of Energy (DoE), and Depart-
ment of Defense (DoD), which —according to Table 1— account for 98% of government-funded
patents.?? To construct private-sector counterparts to federal agencies, we assign patents to
industries based on CPC codes that capture the main technological domains relevant to each
industry, except for university-related patents, which are identified by classifying assignee
names (Appendix G).

In the top and bottom rows of Figure 8, we present the point estimates of the dynamic
effects on GDP and TFP, respectively, of an unanticipated increase in patenting by either
federal agencies or industries in the private sector. The first and third columns refer to

public-private and public-public innovations, respectively. In the second column, we report

21Tn the letter to President Truman summarizing the main findings of his report, (Bush, 1945b) writes: “The Government
should foster the opening of new frontiers and this is the modern way to do it. [...] The effective discharge of these new
responsibilities will require the full attention of some overall agency devoted to that purpose. There is not now in the permanent
Governmental structure receiving its funds from Congress an agency adapted to supplementing the support of basic research
in the colleges, universities, and research institutes, both in medicine and the natural sciences, adapted to supporting research
on new weapons for both Services, or adapted to administering a program of science scholarships and fellowships. Therefore I
recommend that a new agency for these purposes be established.”

22The Department of Education Organization Act of 1979 (Public Law 96-88) established the U.S. Department of Health
and Human Services (HHS) as the primary federal agency responsible for public health, social services, medical research, and
Medicare and Medicaid administration. Since its inception in 1980, the vast majority of HHS patents have been funded by the
NIH. Accordingly, we will refer to patents by all federal health agencies over the full sample as ‘NIH".
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the findings for industries that most closely match the main industry in which each federal
agency or department mainly operates.”> Coloured (grey) lines refer to point estimates that
are (not) statistically significant at the 68% confidence level. In a few instances, the response
of total patents is negative on impact; accordingly, only for Figures 8a and 8b, we normalize
the IRFs across agencies, industries and research fields such that each innovation shock has a
maximum impact of 1% on total patents over the forecast horizon, following Fieldhouse and
Mertens (2023).

Three main results emerge from Figure 8a. First, NSF and NIH innovations lead to
the largest medium-term gains in TFP and GDP among the public-private patents of the
first column, with peaks around 0.3% and 0.5%, respectively, in line with the counterfactual
analysis on NIH funding cuts in Azoulay et al. (2025). The other federal agencies and depart-
ments produce relatively smaller effects, which however are still economically and statistically
substantial. Second, fully-private innovations in the second column display muted hetero-
geneity, especially in terms of TFP responses. Third, in contrast, we observe the largest
heterogeneity among patents that are funded and owned by the government in the third
column, consistent with the notion that the public sector pursues ‘high-risk/high-reward’
innovations (Section 4). Within those, NIH and DoD stand out as the most and least im-
pactful agency/department, respectively. In the next section, we will come back to this
result by looking at the healthcare research field, showing that government-funded patents

systematically outperform private-funded innovations in terms of GDP and TFP impact.

5.2 Research Fields

In the previous section, we have shown that NIH and NSF support innovations with the
largest economic impact. In this section, we shed light on why: are these agencies special, or
do they happen to fund work in research fields whose innovations tend to have stronger effects
on GDP and TFP? To answer this important question, we look at the composition of each
agency’s patents by research field. In Appendix Figures G1 and G2, we report the share of all

pooled patents by research field for the players under investigation, namely the main federal

23In Appendix G, we bridge federal agencies, research fields, and industries using CPC codes. Due to data limitations in
PatentsView, the sample for the ‘Education’ sector in the second column of Figure 8 begins in 1976.
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Figure 8: The Effects of Innovation by Federal Agencies and Research Fields

(a) Federal Agencies and Industries
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Note. The figure displays the dynamic effects of innovation shocks in each category of patents (public-private, private-private,
public-public; by column) on (log) real per-capita GDP and (log) utilization-adjusted TFP (by row) by agency-sectoral breakdown
(panel a) and research fields (panel b). The estimation by local projections follows eq.(1). The size of the shock is normalized
such that the peak response of total patents is 1%. The set of controls includes 4 lags of the patent group shocked and real
per-capita GDP, TFP, real per-capita investment, real stock prices, the T-bill, real per-capita R€D expenditure, and the number
of patents not belonging to the shocked group. All variables except the T-bill are in logs. Colored (gray) lines denote (no)
significance at the 68% level according to Newey and West (1987) standard errors. Sample: 1950:Q1-2015:Q4 (except for
‘University’ in the second column, 1975q1-2015:Q4). 31



agencies and the private sector in this section, and research institutes and universities in the
next section. While each player has historically patented innovations across a broad range
of fields, four specific fields account for at least 40% of all patents granted to each player in
the post-WWII period. Such fields are: Healthcare & Biotechnology, Electronics, Chemicals,
and Engineering. Accordingly, we focus on patents in these four research fields to explore
potential differences in the effectiveness of publicly versus privately funded innovation within
each of them.?*

In Figure 8b, we replicate the setting and format of Figure 8a. Coloured lines represent all
the significant point estimates at the 68% confidence level, with each research field displayed
with a different pattern and a different colour. The main finding of the exercise in this panel
is that among government-funded patents, the green lines with squares for ‘healthcare & bio-
technology’ appear to outperform the other research fields, especially among public-public
innovations. This contrast is all the more striking when set against the additional result (in
the second column) showing that, among private patents, the ‘healthcare & biotechnology’
field is associated with little advantage in productivity or output growth relative to the other
research fields.

The much smaller GDP and TFP effects of private innovations in healthcare and biotech-
nology, relative to public patents, align with a large empirical literature showing that the
incentives of profit-maximizing firms often limit their contribution to aggregate productiv-
ity and economic growth. Three channels are central. First, strategic patenting —through
common practices such as ‘patent thickening’ and ‘evergreening’— is used to block com-
petitors and extend market exclusivity without meaningful technological progress (Frakes
and Wasserman, 2025; Dwivedi et al., 2010).>> Second, a substantial share of private R&D
is directed toward drugs that enhance longevity and quality of life among older patients,
who are less likely to participate in the labor force (Benmelech et al., 2021). Third, private
firms disproportionately target large markets, so technological change is steered toward the
most profitable areas rather than the most productivity-enhancing innovations (Boldrin and

Levine, 2008; Acemoglu and Linn, 2004; Moen-Vorum, 2025).

24 Appendix Table G2 shows the mapping between CPC codes and fields of knowledge.

25More specifically, ‘patent thickening’ refers to the practice of building large patent portfolios to raise rivals’ litigation or
licensing costs, while ‘evergreening’ denotes the strategy of obtaining later patents on minor drug modifications —such as new
formulations, doses, or uses— to prolong market exclusivity beyond the original patent term.
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5.3 Innovation Spillovers

In Section 3.1, we have shown that publicly-funded/privately-owned patents generate sub-
stantial spillovers to the rest of the economy by stimulating a significantly larger response of
capital and R&D expenditure in the business sector than the other two patent categories. In
this section, we aim to explore this finding further and examine the contributions of differ-
ent federal agencies, industries, and research fields to driving innovation spillovers compared
to their private-sector counterparts. We do so in the spirit of Williams (2017), who pro-
vide a comprehensive survey of the various channels through which patents affect research
investment in the economy.

In Figure 9, we report the response of R&D expenditure by the business sector to a set
of innovation shocks that suddenly increase patenting activities by only one federal agency,
an industry or a research field at the time. The blue lines and bands refer to public-private
innovation, while the red broken lines and shaded areas stand for private-private patents.
The first row summarizes the results for NSF, NIH and NASA, which we match in the
private sector with university, ‘healthcare and biotechnology’ and aerospace, respectively.
The first (second) panel of the second row depicts the Department of Energy among public-
private patents and the energy sector for only private enterprises (Department of Defense and
manufacturing). These groups correspond to those displayed in Figure 8a. The remaining
panel in the second row and the third row contrast the spillover generated by public-private
collaborations vis-a-vis those by fully private initiatives in the research fields of ‘Chemicals’,
‘Healthcare and Biotechnology’, ‘Electronics’, and ‘Engineering’ (which correspond to the
groups in Figure 8b).

A few findings emerge from Figure 9. First, publicly funded but privately owned inno-
vations lead systematically to larger spillovers towards the rest of the economy than fully
private patents, for most agencies and industries. Second, very sizable differences in the
medium-term responses of private R&D are recorded in the ‘Education’, ‘Health’ and ‘En-

ergy’ sectors, driven by the NSF, the NIH and the Department of Energy.”® In particular,

26Interestingly, while NSF-funded patents crowd-in private R&D, university patents with no public funds crowd-out private
R&D. The former finding chimes with Lerner et al. (2025) who report significant commercial spillovers from university-based
research. The latter result is consistent with Arora et al. (2023), who argue for the rivalrous and excludable nature of public
science. Our evidence, however, qualifies their finding and suggests it may hold only for privately funded university innovation.
Our results of significant private R&D spillovers from patents funded by the Department of Energy aligns well with the evidence
provided by Myers and Lanahan (2022) based on public R&D expenditure data.
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Figure 9: The Effects of Innovation on Private R&D by Agencies, Industries and Fields
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Note. The figure displays the dynamic effects of innovation shocks in public-private (solid blue lines) and private-private

(dashed red lines) patents on (log) real private RED per capita, by agency (top row and two leftmost panels of the second row)
and technology field. The estimation by local projections follows eq.(1). The size of the shock is normalized such that the peak
response of total patents is 1%. The set of controls includes four lags of the patent group shocked and real per-capita GDP,
TFP, real per-capita investment, real stock prices, the T-bill, real per-capita R€D expenditure, and the number of patents in
other groups. All variables except the T-bill are in logs. The solid line represents the point estimate, while the shaded areas
report 68% and 90% confidence intervals computed from Newey and West (1987) standard errors. Sample: 1950:Q1-2015:Q4.
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NSF-funded patents stimulate subsequent scientific research and product development sub-
stantially more than NIH, in line with the evidence provided by Akcigit et al. (2020) and
Williams (2013), respectively. Third, the gap between public-private patents and fully pri-
vate innovation is smaller (but still significant) for ‘Chemicals’ and ‘Engineering’, while it
is modest in ‘Electronics’, DoD/‘Manufacturing” and NASA /‘Aerospace’, consistent with a
larger impact of public R&D outside NASA and the Defense sector after WWII, as reported
by Kantor and Whalley (2025) and Fieldhouse and Mertens (2023), respectively.”

5.4 Innovation Networks

In this section, we expand on the spillover result above by looking at innovation network
centrality. To the extent that spillovers are an important part of knowledge diffusion, patents
that are more central in the innovation network could yield a stronger cascade effect and a
larger economic impact.

To evaluate this hypothesis, we split public-private patents and private-private patents
into two further groups: top 25% and bottom 75% of the innovation network centrality
distribution.”® Following Liu and Ma (2024), network centrality is defined as the dominant
left eigenvector of the patent citation network studied by Acemoglu et al. (2016). Those
authors define the patent citation network as the rate at which patents in category j’ receive
citations from patents in category 7, scaled by the number of patents in category j’, where
categories are USPC patent classes. We cumulate their annual measures and construct the
network using the citation intensity of any granted patent over ten years, excluding citations
within the same USPC patent class.

The findings of this exercise are summarized in Figure 10. Following the previous charts,
the top (bottom) row stands for GDP (TFP) while the first (second) column refers to in-
novations from public-private collaborations (only private sector). Blue solid lines and blue
shaded areas display the results for the top 25% most central patents in each category, while
the orange solid broken lines and orange shaded areas depict their bottom 75% counterpart.

The main inference one can draw from Figure 10 is that the top 25% most central innovations

27The significant spillovers to private R&D in Figure 9 chimes with the evidence in Fleming et al. (2019) that the number of
corporate patents citing government-funded innovations has increased dramatically since the mid-1960s.

28Given the very small number of public-public patents in the top quartile, we exclude this group from this analysis.
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Figure 10: The Effects of Innovation by Innovation Network Centrality
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Note. The figure compares the dynamic effects of innovation shocks to the top quartile of patents ranked by innovation
network centrality versus innovation shocks to other patents in each category (public-private, private-private; by column) on
(log) real per-capita GDP and (log) utilization-adjusted TFP (by row). Innovation network centrality is the dominant left
eigenvector of the USPC-level patent citation network, as reported in Acemoglu et al. (2016) (see the text for further details).
The estimation by local projections follows eq.(1). The size of the shock is normalized such that total patents increase by 1%
on impact. The set of controls includes 4 lags of the patent group shocked and real per-capita GDP, TFP, real per-capita
investment, real stock prices, the T-bill, real per-capita RED expenditure, and the number of patents in other groups. All
variables except the T-bill are in logs. The solid blue (dashed orange) line represents the point estimate for the top 25% (bottom
75%) patents by centrality, while the corresponding shaded areas report 90% confidence intervals computed from Newey and
West (1987) standard errors. Sample: 1950:Q1-2015:Q4.
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produced by public-private collaborations exert a larger medium-term impact on GDP and
TFP, with peaks towards the end of the forecast horizon that are roughly twice as large as
the maximum effect of public-private patents in the bottom 75% of the innovation network
centrality distribution. In contrast, we find little economic or statistical difference between
the effects of these two sub-groups among patents that are fully funded and developed by
the private sector.

To appreciate the connection between network centrality and macroeconomic impact,
we examine the distribution of high-centrality patents within research fields, agencies, and
(anticipating the following section) assignee types. Figure H1 shows the fraction of patents
within each group that are in the top percentiles of the innovation network centrality dis-
tribution; Figure H2 illustrates the relative concentration of each group at the top of the
same distribution. Among research fields, ‘chemicals’ and ‘healthcare & biotechnology’ have
the largest share of high-centrality patent categories. These are also the fields for which we
estimate the largest GDP and TFP responses for government-private and (for ‘healthcare &
biotechnology’) government-government patents (see Figure 8b). Among agencies, the NIH
has the highest share of patents at the top of the innovation network centrality distribution,
followed by NSF and DoE, consistent with the results in Figure 8. Finally, universities and
research institutes are the assignees with the highest share of high-centrality patents; in the

next section, we will show that these two players produce the most impactful innovations.

6 Who are the Main Innovators?

In the previous section, we identified NSF and NIH as the agencies that develop innovations
with the largest medium-term impact on TFP and GDP. Furthermore, we have contrasted
the higher performance of public-public patents in ‘healthcare & biotechnology’ relative to
the far smaller productivity gains associated with their solely private counterparts. In this
section, we split the data along another dimension: the players. We start with the non-
profits vs for-profits divide, and then zoom in on research institutes and universities among
the former group, and on start-ups and VC-backed firms for the latter. The sources of data

for this section are PatentsView for research institutes or university patent assignees and
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Ewens and Marx (2024) for start-ups or VC-backed companies, which both start in 1976.

6.1 Non-profit vs. For-profit Organizations

In each category, we separate patents into two sub-groups, depending on whether the orga-
nization is for-profit or non-profit. As there is no heterogeneity along this dimension among
public-public patents, we exclude this category from the analysis in this section. The esti-
mates are summarized in Figure 11, which reports the effects of public-private sponsorship
(left column) and solely private innovations (right column) on GDP (top row) and TFP
(bottom row). Blue solid lines and associated 90% confidence bands illustrate the effects of
innovation by non-profit organizations, while orange broken lines and shaded areas refer to

patents owned by for-profit businesses.

Figure 11: The Effects of Innovation by For-profit vs Non-profit Organizations
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Note. The figure compares the dynamic effects of innovation shocks in each category of patents (public-private, private-private;
by column) across profit and non-profit sectors on (log) real per-capita GDP and (log) utilization-adjusted TFP (by row). The
estimation by local projections follows eq.(1). The size of the shock is normalized so as to increase total patents by 1% on impact.
The set of controls includes 4 lags of the patent group shocked and real per-capita GDP, TFP, real per-capita investment, real
stock prices, the T-bill, real per-capita R€D expenditure, and the number of patents in other groups. All variables except the
T-bill are in logs. The solid blue (dashed orange) line represents the point estimate for the non-profit (profit ) patents, while the
corresponding shaded areas report 90% confidence intervals computed from Newey and West (1987) standard errors. Sample:
1976:Q1-2015:Q4.

Our estimates suggest three main takeaways. First, among public-private patents (left
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column), non-profit organizations produce innovations that have significantly larger and more
persistent effects on GDP and TFP over the medium term. Second, in contrast, the impact
of patents funded by the government and owned by for-profit entities is never statistically
different from zero. Third, on the other hand, there is no discernible heterogeneity between
patents produced by for-profit and non-profit companies in the private sector (right column).
In Section 6.2, we will focus on research institutes and universities within the non-profit

sector, while in Section 6.3, we will consider start-ups and VC-backed for-profit companies.

6.2 Research Institutes and Universities

In his report, Bush (1945a) envisioned a central role for ‘basic’ research, defined as “research
performed without thought of practical ends” and for the “general knowledge and understand-
ing of nature and its laws”. In the letter to President Truman presenting the report, Bush
(1945b) writes: “It is only the colleges, universities, and a few research institutes that devote
most of their research efforts to expanding the frontiers of knowledge. [...] These institutions
provide the environment which is most conducive to the creation of new scientific knowledge
and least under pressure for immediate, tangible results”.?° Bush’s vision has been reflected
in the sustained commitment of higher education institutions and research laboratories to
basic research.

In Appendix Figure I1 Panel A, we show that most of the post-WWII R&D spending
in the American economy has involved later-stage innovations, such as applied research and
experimental development, driven by the private sector. However, the weight of ‘basic’ re-
search has grown over time, reaching almost 20% in 2010. In Appendix Figure I1 Panel B,
we show that the U.S. (federal) government accounts for the lion’s share of funding sources,
financing an average of 60% of annual basic R&D expenditures since the 1950s; after includ-
ing universities’ own sources, non-business funds committed to basic R&D have averaged
around 70%. As for the composition of federally funded basic R&D, Appendix Figure I1
Panel C makes it clear that universities and research institutes account for about 70% of

the government budget. Accordingly, in this section, we single out research institutes and

29In Bush (1945a), he adds: “The responsibility for basic research in medicine and the underlying sciences, so essential to
progress in the war against disease, falls primarily upon the medical schools and universities.”
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universities as primary drivers of ‘basic’ research.?’ These two groups span the vast majority

of the non-profit world.

Figure 12: The Effects of Innovation by Research Institutes and Universities
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Note. The figure compares the dynamic effects of innovation shocks in each category of patents (public-private, private-private;
by column) across research institutes and universities on (log) real per-capita GDP and (log) utilization-adjusted TFP (by row).
The estimation by local projections follows eq.(1). The size of the shock is normalized such as to increase total patents by 1% on
impact. The set of controls includes 4 lags of the patent group shocked and real per-capita GDP, TFP, real per-capita investment,
real stock prices, the T-bill, real per-capita R€D expenditure, and the number of patents in other groups. All variables except
the T-bill are in logs. The solid blue (dashed orange) line represents the point estimate for the research institutes (universities),
while the corresponding shaded areas report 90% confidence intervals computed from Newey and West (1987) standard errors.
Sample: 1976:Q1-2015:Q4.

In Figure 12, we report the effects of innovation by universities (orange broken lines)
and research institutes (blue solid lines) on GDP and TFP. The left (right) column refers
to public-private (solely private sector) patents. It is worth noting that Gross and Sampat
(2025a) categorise all research institutes and universities as ‘private’ entities. Accordingly,
any difference between the columns in Figure 12 is only due to whether funds are made
available by the government or the private sector. In the words of Bush (1945a), only the
estimates in the left column can be interpreted as “basic” research (i.e. government-funded

and carried out by research institutes and universities). Furthermore, as the estimates in the

30Looking at research institutes and universities to proxy for ‘basic’ research compares favorably with alternative metrics
based on citations (Section 4) or patent textual analysis. First, the binary classification of these institutions is less prone to
the measurement errors typically associated with the specific definition of ‘basic’ research using patent descriptions or R&D
data. Second, to the extent that research institutes and universities might also engage in ‘applied’ research, the estimates in
this section could be interpreted as a lower bound for the actual impact of ‘basic’ research on TFP and GDP.

40



right column refer to the same institutions but privately funded, any difference between the
two columns can be interpreted as the marginal contribution of government support towards
‘basic’ research.

The estimates in Figure 12 lead to three main findings. First, research institutes funded
by the government (left column) make the largest contribution to the economy with persistent
and significant effects that reach a peak in excess of 0.4% after six years for GDP and in excess
of 0.2% after eight years for TFP, following a 1% increase in total patents. Second, patents
developed by universities using government funds (left column) have a relatively smaller but
still largely significant aggregate impact, around 0.2% for output and 0.1% for productivity
over the medium-term. Third, when the funds come from private sources (right column),
research institutes and universities produce innovations that have smaller and less significant
effects, consistent with the event study in Babina et al. (2023). Together with the results in
Sections 4 and 5.1, we conclude that ‘basic’ research in universities and research institutes

funded by NIH and NSF is a fundamental driver of post-WWII American innovation.

6.3 Are start-ups and venture capital-backed firms special?

In the final part of this section, we turn our attention to the for-profit world and single
out the possible special role of start-ups and VC-backed firms. To this end, we rely on the
classification of patents by these two actors in Ewens and Marx (2024). The estimates for
these two groups are displayed in Figures 13. In Panel A (B), start-ups (VC-backed firms)
show as blue solid lines and 90% confidence bands while other firms show as orange broken
lines and shaded areas.

When government-funded (left column), the difference between start-ups and other firms
could not be starker: the innovation by the former have persistent effects that are very
significant, both statistically and economically, with peaks around 0.6% and 0.3% for GDP
and TFP, respectively. In contrast, when the source of funds is private (right column of
Figure 13), the gap between the effects generated by the two groups of firms is negligible.
In other words, start-ups are far more innovative than established companies but only when
funded by the government.

In Panel B, we repeat the same exercise of Panel A but for VC-backed (blue solid lines
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Figure 13: The Effects of Innovation by Firms’ Characteristics

(a) Start-ups Versus Established Firms
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Note. The figure compares the dynamic effects of innovation shocks in each category of patents (public-private, private-private;
by column) across start-ups versus established firms (Panel A) and VC-backed versus non-VC-backed firms (Panel B) on (log)
real per-capita GDP and (log) utilization-adjusted TFP (by row). The estimation by local projections follows eq.(1). The size
of the shock is normalized such as to increase total patents by 1% on impact. The set of controls includes 4 lags of the patent
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and 90% confidence intervals) and non-VC-backed firms (orange broken lines and shaded
areas). There is some evidence that, when government-funded (left column), VC-backed firms
produce more growth-enhancing innovations than other companies; but the magnitudes are
smaller than for start-ups and the confidence intervals of the two groups overlap. In contrast,
there is virtually no heterogeneity in the effects of privately funded patents (right column).
Finally, VC-backed firms with government support tend to outperform their fully private
counterparts, reminiscent of the findings by Beraja et al. (2024) for China.

Summary. This section highlights three key findings. First, basic research—exemplified by
innovations generated in universities and research institutes financed by taxpayers—produces
the strongest and most durable effects on U.S. aggregate TFP and GDP. Second, government-
funded patents developed by start-ups, and to a lesser extent by VC-backed firms, yield larger
macroeconomic gains than those owned by established business-sector companies. Third,
in the absence of government support, these heterogeneities vanish, leaving no systematic

differences in the aggregate impact of innovation on output and productivity.

7 Conclusions

Technological progress is often credited to private ingenuity, but our analysis highlights the
role of government support in shaping the trajectory of American innovation. Although
patents funded by the U.S. government represent only a fraction of overall activity, they are
associated with a disproportionate share of medium-term fluctuations in aggregate produc-
tivity over the postwar period. This link operates primarily through public funds channeled
to universities and research institutes, which emerge as the most powerful correlates of TFP
and GDP growth. Their innovations, unconstrained by short-term commercial goals, coin-
cide with the strongest spillovers to private R&D and investment, laying the groundwork for
transformative technologies.

Our findings contribute to the macroeconomic literature by identifying a novel source
of aggregate technology shocks: government-funded but privately owned innovation. They

also reinforce the classical insight of Nelson (1959) and Arrow (1962) that markets under-
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provide basic research. The institutional architecture envisioned and strengthened by Bush
(1945a) —most notably the NIH and NSF— has been central in sustaining U.S. technolog-
ical leadership. From a policy perspective, our evidence points to the enduring importance
of funding basic research in universities and research institutes. Such investments crowd in
private-sector activity, generate general-purpose technologies, and shape the medium-term
cycles of productivity and economic growth that ultimately underpin the global frontier of
knowledge and living standards.

This paper takes a first step toward understanding how government support influences
the direction and macroeconomic impact of technological progress. The framework we de-
velop opens the door to new research avenues on the interaction between public policy and
innovation. Cross-country comparisons —from South Korea’s technological ascent to China’s
state-led innovation drive and Europe’s productivity slowdown— can shed light on how in-
stitutional context shapes these dynamics. Beyond patents, future work can examine the
macroeconomic role of grants, clinical trials, and other channels of knowledge creation. While
we focus on the funding source-ownership structure divide, many other forms of heterogene-
ity may also play a central role in shaping macroeconomic outcomes: for instance, how
universities and research institutes serve as springboards for start-up entrepreneurs and their
innovation; the macroeconomic impact of green and brown technologies, and whether any
differential effect may depend on public versus private funding; the extent to which private
investment in frontier technologies such as Al complements or substitutes public research
and affects its macroeconomic influence; how inventors’ demographics, origins, and networks
shape aggregate outcomes. Finally, our findings reveal institutional forces largely absent
from leading theories of endogenous growth. Bringing these actors into the core of macroeco-
nomic analysis can lay the foundations for a deeper understanding of how public support and

private ingenuity drive technological transformation and living standards in the long-run.

44



References

AcemocGLu, D., U. AkciaciT, AND W. R. KERR (2016): “Innovation network,” Proceedings
of the National Academy of Sciences, 113, 11483-11488.

AceMocGLU, D. AND J. LINN (2004): “Market Size in Innovation: Theory and Evidence from
the Pharmaceutical Industry*,” The Quarterly Journal of Economics, 119, 1049-1090.

AcHION, P., A. BERGEAUD, T. BOPPART, AND J.-F. BROUILLETTE (2025): “Resetting
the Innovation Clock: Endogenous Growth through Technological Turnover,” Tech. rep.

Akcicrt, U., J. GrIGSBY, T. NICHOLAS, AND S. STANTCHEVA (2021): “Taxation and
Innovation in the Twentieth Century,” The Quarterly Journal of Economics, 137, 329-385.

Akcicit, U., D. HANLEY, AND N. SERRANO-VELARDE (2020): “Back to Basics: Basic

Research Spillovers, Innovation Policy, and Growth,” The Review of Economic Studies, 88,
1-43.

Akcicit, U., D. HANLEY, AND S. STANTCHEVA (2022): “Optimal Taxation and R&D
Policies,” Econometrica, 90, 645—-684.

ANTOLIN-D1AZ, J. AND P. SURrICO (2025): “The Long-Run Effects of Government Spend-
ing,” American FEconomic Review, 115, 2376-2413.

ARORA, A.; S. BELENZON, L. C. C10ACA, L. SHEER, AND H. ZHANG (2023): “The Effect
of Public Science on Corporate R&D,” Working Paper 31899, NBER.

Arrow, K. (1962): “Economic Welfare and the Allocation of Resources for Invention,”
in The Rate and Direction of Inventive Activity: Economic and Social Factors, National
Bureau of Economic Research, Inc, 609-626.

AzourAy, P., M. CrLancy, D. L1, AND B. N. SAMPAT (2025): “What if NIH had been
40% smaller?” Science, 389, 1303-1305.

AzourAy, P., J. S. GRAFF ZiviN, D. L1, AND B. N. Sampar (2019): “Public R&D
Investments and Private-sector Patenting: Evidence from NIH Funding Rules,” The Review
of Economic Studies, 86, 117-152.

BaBina, T., A. X. HE, S. T. HoweLL, E. R. PERLMAN, AND J. STAUDT (2023):
“Cutting the Innovation Engine: How Federal Funding Shocks Affect University Patenting,
Entrepreneurship, and Publications,” The Quarterly Journal of Economics, 138, 895-954.

Basu, S., J. G. FERNALD, AND K. S. MILES (2006): “Are Technology Improvements
Contractionary?” American Economic Review, 96, 1418-1448.

BeLL, A., R. CHETTY, X. JARAVEL, N. PETKOVA, AND J. V. REENEN (2019): “Who

Becomes an Inventor in America? The Importance of Exposure to Innovation,” The Quar-
terly Journal of Economics, 134, 647-713.

45



BENMELECH, E., J. EBERLY, D. PAPANIKOLAOU, AND J. KRIEGER (2021): “Private and

Social Returns to RD: Drug Development and Demographics,” AEA Papers and Proceed-
ings, 111, 336-40.

BeErAJA, M., W. PENG, D. Y. YANG, AND N. YUCHTMAN (2024): Government as Venture
Capitalists in Artificial Intelligence, University of Chicago Press, 81-102.

BERGEAUD, A., A. GuiLLouzouic, E. HENRY, AND C. MALGOUYRES (2025): “From
public labs to private firms: magnitude and channels of R&D spillovers,” The Quarterly
Journal of Economics, forthcoming.

BERTOLOTTI, F. (2022): “Patent Length, Innovation, and the Role of Technology Disclosure
Externalities,” .

BLANCHARD, O. J. AND D. QUAH (1989): “The Dynamic Effects of Aggregate Demand
and Supply Disturbances,” American FEconomic Review, 79, 655-673.

Broom, N., M. SCHANKERMAN, AND J. VAN REENEN (2013): “Identifying Technology
Spillovers and Product Market Rivalry,” Econometrica, 81, 1347-1393.

Broowm, N., J. VAN REENEN, AND H. WILLIAMS (2019): “A Toolkit of Policies to Promote
Innovation,” Journal of Economic Perspectives, 33, 163-84.

BoLDRIN, M. AND D. K. LEVINE (2008): Against Intellectual Monopoly, no. 9780521879286
in Cambridge Books, Cambridge University Press.

BusH, V. (1945a): Science, the Endless Frontier, Princeton University Press.

(1945b): “Transmittal Letter and Summary of the Report ‘Science: The Endless
Frontier’,” A report to the president, United States Government Printing Office.

CHRISTIANO, L. J., M. EICHENBAUM, AND R. VIGFUSSON (2003): “What Happens After a
Technology Shock?” NBER Working Papers 9819, National Bureau of Economic Research.

(2004): “The Response of Hours to a Technology Shock: Evidence Based on Direct
Measures of Technology,” Journal of the Furopean Economic Association, 2, 381-395.

CLOYNE, J., J. MARTINEZ, H. MUMTAZ, AND P. SuRrICO (2025): “Short-Term Tax Cuts,
Long-Term Stimulus,” Working Paper 30246, National Bureau of Economic Research.

CoHEN, L., U. G. GURUN, AND S. D. KOMINERS (2016): “The growing problem of patent
trolling,” Science, 352, 521-522.

CoiBION, O., Y. GORODNICHENKO, L. KUENG, AND J. SiLviA (2017): “Innocent By-
standers? Monetary policy and inequality,” Journal of Monetary Economics, 88, 70-89.

Cozzi, G. AND G. IMmpULLITTI (2010): “Government Spending Composition, Technical

Change, and Wage Inequality,” Journal of the European Economic Association, 8, 1325—
1358.

46



DE RIDDER, M. (2024): “Market Power and Innovation in the Intangible Economy,” Amer-
ican Economic Review, 114, 199-251.

DECHEZLEPRETRE, A., E. EINIO, R. MARTIN, K.-T. NGUYEN, AND J. VAN REENEN
(2023): “Do Tax Incentives Increase Firm Innovation? An RD Design for RD, Patents,
and Spillovers,” American Economic Journal: Economic Policy, 15, 486-521.

DWwIVEDI, G., S. HALLIHOSUR, AND L. RANGAN (2010): “Evergreening: A deceptive device
in patent rights,” Technology in Society, 32, 324-330.

DYEVRE, A. (2024): “Public R&D Spillovers and Productivity Growth,” Mimeographed,
london School of Economics.

EwENSs, M. AND M. MARX (2024): “Firm Age and Invention: An Open-Access Dataset,”
Working paper.

FERNALD, J. G. (2012): “A quarterly, utilization-adjusted series on total factor productiv-
ity,” Working Paper Series 2012-19, Federal Reserve Bank of San Francisco.

FIELDHOUSE, A. J. AND K. MERTENS (2023): “The Returns to Government R&D: Evidence
from U.S. Appropriations Shocks,” Working Papers 2305, Federal Reserve Bank of Dallas.

FISHER, J. D. M. (2006): “The Dynamic Effects of Neutral and Investment-Specific Tech-
nology Shocks,” Journal of Political Economy, 114, 413-451.

FLEMING, L., H. GREENE, G. L1, M. MARX, AND D. YA0 (2019): “Government-funded
research increasingly fuels innovation,” Science, 364, 1139-1141.

FORNARO, L. AND M. WoOLF (2025): “Fiscal Stagnation,” Working Paper 20149, Centre
for Economic and Policy Research.

Forni, M. AND L. GAMBETTI (2014): “Sufficient information in structural VARs,” Journal
of Monetary Economics, 66, 124—136.

FrRAKES, M. D. AND M. F. WASSERMAN (2025): “Strategic Patenting: Evidence from
the Biopharmaceutical Industry,” Working Paper 34024, National Bureau of Economic
Research.

Francis, N. AND V. A. RAMEY (2005): “Is the technology-driven real business cycle

hypothesis dead? Shocks and aggregate fluctuations revisited,” Journal of Monetary Eco-
nomics, 52, 1379-1399.

(2006): “The Source of Historical Economic Fluctuations: An Analysis Using Long-
Run Restrictions,” .

FRIEDMAN, M. AND A. J. SCHWARTZ (1963): A Monetary History of the United States,
1867-1960, Princeton University Press.

GALi, J. (1999): “Technology, Employment, and the Business Cycle: Do Technology Shocks
Explain Aggregate Fluctuations?” American Economic Review, 89, 249-271.

47



GoMEz-CrAM, R., Y. Guo, H. KuNG, AND L. MEccA (2025): “Government Spending
and Rising Industry Stars,” Mimeo, London Business School.

GORODNICHENKO, Y. AND B. LEE (2020): “Forecast error variance decompositions with
local projections,” Journal of Business € Economic Statistics, 38, 921-933.

GRross, D. P. AND B. N. SAMPAT (2023): “America, Jump-Started: World War II RD and
the Takeoff of the US Innovation System,” American Economic Review, 113, 3323-56.

— (2025a): “The Government Patent Register: A new resource for measuring U.S.
government-funded patenting,” Research Policy, 54, 105142.

(2025b): “The Therapeutic Consequences of the War: World War II and the 20th-
Century Expansion of Biomedicine,” NBER Working Papers 33457, National Bureau of
Economic Research, Inc.

HamicTon, J. D. (1985): “Historical causes of postwar oil shocks and recessions,” The
Energy Journal, 6, 97-116.

Hausman, J., B. H. HALL, AND Z. GRILICHES (1984): “Econometric Models for Count
Data with an Application to the Patents-R & D Relationship,” Econometrica, 52, 909-938.

JANEWAY, W. H. (2012): Doing Capitalism in the Innovation Economy, Cambridge Uni-
versity Press.

JARAVEL, X., N. PETKOVA, AND A. BELL (2018): “Team-Specific Capital and Innovation,”
American Economic Review, 108, 1034-73.

JorpA, O. (2005): “Estimation and Inference of Impulse Responses by Local Projections,”
American Economic Review, 95, 161-182.

JorDA, O. AND A. M. TAYLOR (2025): “Local Projections,” Journal of Economic Litera-
ture, 63, 59-110.

KaAryani, A., N. BLooMm, M. CARVALHO, T. HASSAN, J. LERNER, AND A. TAHOUN
(2025): “The Diffusion of New Technologies,” The Quarterly Journal of Economics, 140,
1299-1365.

KANTOR, S. AND A. T. WHALLEY (2025): “Moonshot: Public R&D and Growth,” Amer-
ican Economic Review, 115, 2891-2925.

KeLLy, B., D. PAPANIKOLAOU, A. SERU, AND M. TADDY (2021): “Measuring Techno-
logical Innovation over the Long Run,” American Economic Review: Insights, 3, 303—20.

KLINE, P., N. PETkovAa, H. WiLLiAMS, AND O. ZIDAR (2019): “Who Profits from
Patents? Rent-Sharing at Innovative Firms,” The Quarterly Journal of Economics, 134,
1343-1404.

48



KocGaN, L., D. PAPANIKOLAOU, A. SERU, AND N. STOFFMAN (2017): “Technological
Innovation, Resource Allocation, and Growth®,” The Quarterly Journal of Economics,
132, 665-712.

LEICESTER, A., R. CRAWFORD, AND D. PAKOzDI (2024): “Returns to Public R&D,” Re-
port for the department for science, innovation and technology (dsit), Frontier Economics.

LERNER, J., H. J. MANLEY, C. STEIN, AND H. L. WiLL1AMS (2025): “The Wandering
Scholars: Understanding the Heterogeneity of University Commercialization,” Economet-
rica, forthcoming.

L1, D., P. AzourLAy, AND B. N. SAMPAT (2017): “The applied value of public investments
in biomedical research,” Science, 356, 78-81.

Liu, E. AND S. MA (2021): “Innovation Networks and R&D Allocation,” Working Paper
29607, National Bureau of Economic Research.

(2024): “Innovation Networks and RD Allocation,” Working Paper 29607, National
Bureau of Economic Research.

MARTINEZ, J. AND J. MOEN-VORUM (2025): “Task Relevance: A New Measure of Tech-
nological Change,” Working Paper.

MARX, M. AND A. FUEGI (2020): “Reliance on science: Worldwide front-page patent
citations to scientific articles,” Strategic Management Journal, 41, 1572—-1594.

(2022): “Reliance on science by inventors: Hybrid extraction of in-text patent-to-
article citations,” Journal of Economics €& Management Strategy, 31, 369-392.

Mazzucato, M. (2013): The Entrepreneurial State: Debunking Public vs. Private Sector
Muyths, London: Anthem Press.

MERTENS, K. AND M. O. RAVN (2013): “The Dynamic Effects of Personal and Corporate
Income Tax Changes in the United States,” American Economic Review, 103, 1212-47.

MIRANDA-AGRIPPINO, S., S. HACIOGLU-HOKE, AND K. BLUWSTEIN (2025): “Patents,
News, and Business Cycles,” Review of Economic Studies, forthcoming.

MOEN-VORUM, J. (2025): “Chronic Underinvestment: How Patents Change the Direction
of Pharmaceutical R&D,” Working paper.

MoNTIEL OLEA, J. L., M. PLAGBORG-M@LLER, E. QIAaN, AND C. K. WoLF (2025):
“Local Projections or VARs? A Primer for Macroeconomists,” Working Paper 33871,
National Bureau of Economic Research.

MyEeRs, K. R. AND L. LANAHAN (2022): “Estimating Spillovers from Publicly Funded
RD: Evidence from the US Department of Energy,” American Economic Review, 112,
2393-2423.

49



NELSON, R. (1959): “The Simple Economics of Basic Scientific Research,” Journal of Polit-
ical Economy, 67.

NEWEY, W. K. AND K. D. WEST (1987): “A Simple, Positive Semi-Definite, Heteroskedas-
ticity and Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, 703-708.

PLAGBORG-M@LLER, M. AND C. K. WoOLF (2021): “Local projections and VARs estimate
the same impulse responses,” Econometrica, 89, 955-980.

RAMEY, V. (2016): “Macroeconomic Shocks and Their Propagation,” Handbook of Macroe-
conomics, 2.

RAMEY, V. A. AND M. D. SHAPIRO (1998): “Costly capital reallocation and the effects of

government spending,” in Carnegie-Rochester conference series on public policy, Elsevier,
vol. 48, 145-194.

RAMEY, V. A. AND S. ZUBAIRY (2018): “Government Spending Multipliers in Good Times
and in Bad: Evidence from US Historical Data,” Journal of Political Economy, 126, 850—
901.

RoMER, C. D. AND D. H. ROMER (1989): “Does monetary policy matter? A new test in
the spirit of Friedman and Schwartz,” NBER macroeconomics annual, 4, 121-170.

(2004): “A New Measure of Monetary Shocks: Derivation and Implications,” Ameri-
can Economic Review, 94, 1055-1084.

(2010): “The Macroeconomic Effects of Tax Changes: Estimates Based on a New
Measure of Fiscal Shocks,” American Economic Review, 100, 763-801.

SToCK, J. H. AND M. W. WATSON (2018): “Identification and estimation of dynamic
causal effects in macroeconomics using external instruments,” The Economic Journal, 128,

917-948.

TERRY, S. J., T. CHANEY, K. B. BURCHARDI, L. TARQUINIO, AND T. A. HASSAN (2025):
“Immigration, Innovation, and Growth,” American Economic Review, forthcoming.

UHLIG, H. (2003): “What moves real GNP?” Unpublished manuscript.

WAaNG, N. AND J. HAGEDOORN (2014): “The lag structure of the relationship between
patenting and internal RD revisited,” Research Policy, 43, 1275-1285.

WiLLiams, H. L. (2013): “Intellectual Property Rights and Innovation: Evidence from the
Human Genome,” Journal of Political Economy, 121, 1-27.

— (2017): “How Do Patents Affect Research Investments?” Annual Review of Eco-
nomaics, 9, 441-469.

20



Online Appendix

A Data Sources and Definitions

This Appendix reports further details on data sources and the transformation of the key
variables employed in the empirical analysis of the paper.

A1l Government Patent Registry Database

Gross and Sampat (2025a) constructs the Government Patent Register database by combin-
ing historical administrative records with several modern data sources to create a comprehen-
sive measure of U.S. government-funded patents. The core of the database is the digitization
of the historical U.S. Patent and Trademark Office (USPTO) Register of Government Inter-
est in Patents (“historical GPR”), which the authors digitized and cross-validated against
Google Patents. To supplement the historical GPR and extend the data through 2020, the
authors integrated several modern sources:

USPTO Patent Assignment Dataset (UPAD). They identified government-interest
patents by searching for conveyance text referencing “Executive Order 9424” or “Confirma-
tory License” and by systematically identifying all federal agencies listed as assignees in the
dataset. The authors then manually classified these transactions as conveying either title or
license to the government.

PatentsView Government Interest Statements. The authors used the government
interest statement data from PatentsView. Finding occasional imprecision in the existing
agency identification, they developed a new approach using a large language model (GPT-4)
to extract the specific funding agencies from the text of the interest statements.

Government Assignee Data. They identified government-assigned patents using as-
signee data from Fleming et al. (2019) for the pre-1976 period and from PatentsView for
1976 onwards.

Gap-filling using Fleming et al. (2019). For the pre-1976 period, the authors iden-
tified a set of patents that appeared in the Fleming et al. (2019) data as having an interest
statement but were not in the historical GPR. Using a semi-automated process involving
GPT-4 and manual review, they isolated the true positives from this sample and extracted
the funding agency, adding 818 additional patents to their data.

The final dataset is the union of all patents identified through these sources. The unique
feature of the GPR is the classification of government-funded patents into title and license.
In the former, the federal government is the owner of the patent, whereas in the latter, the
government retains licensed use of the patent because it funded its development. The method
creates a more complete accounting of government-funded patents than previously available,

as many patents, particularly the [icense ones from the mid-twentieth century, can only be
identified via the historical GPR.
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Imputing Unclassified Patents in GPR

The GPR contains a residual category marked as “unknown”, primarily arising from multiple
records with discordant government-interest information. The size of this group increased
after 1980, due to the introduction of digital records and the adoption of the Bayh-Dole
Act. Although our main results are unaffected if we exclude these ambiguous cases from the
analysis, for completeness, we categorize unknown patents into public-private and public-
public. To do so, we apply a straightforward strategy: any indication of a license right for
the government or any involvement of private parties in the innovation’s development signals
joint public-private efforts; the remaining cases are classified as public-public.

Specifically, to classify patents with unclassified government interest (code 3) in the GPR
database, we distinguish between public-public patents (code 1), which are patents developed
entirely within government agencies with government retention of title, and public-private
patents (code 2), which are patents developed with private sector involvement where con-
tractors/grantees retain title with government license.

We first classify patents based on the assignee_type field from PatentsView. Patents
with assignee_type = 6 (U.S. federal government agency) are classified as public-public,
while those with assignee_type = 2 (U.S. company organization) or assignee_type = 3
(foreign company organization) are classified as public-private.

For remaining unclassified patents, we apply regular expression searches to the govern-
ment interest statement text (gi_statement), converted to lowercase. Patents are clas-
sified as public-public if the government interest statement contains any of the following
phrases: "assigned to the united states", "assigned to the usa", "title to this
invention (isl|has been) vested", or "owned by the (u?s?|government)" where 7 al-
lows for optional periods (in Stata). Patents are instead classified as public-private if the
statement contains "nonexclusive" (indicating nonexclusive license to government) or "license"
(indicating contractor/grantee retention of title).

Finally, when a patent has multiple government interest records with conflicting classifi-
cations, we identify duplicate patent IDs with different government interest codes and retain
the public-private record when both public-private and public-public records exist. This pri-
oritization reflects the principle that any private sector involvement classifies the patent as
public-private.

A2 Additional Patent Data Sources

Importance. We employ the measure of patents’ importance from Kelly et al. (2021),
which is the ratio of forward over backward similarity, where similarity is computed using
natural language processing techniques. We use the variable 1qsim05 (importance based on
a 5-year window) in our baseline analysis and 1qsim010 (10-year window) in the robustness
analysis. In the baseline, we define dummy groups based on percentiles computed within each
category. In Appendix F, we report that similar results hold when computing percentiles over
the whole distribution of patents.

Reliance on Science. We employ the measure of reliance on science from Marx and Fuegi
(2020, 2022), which counts scientific citations in patents both in title and in the text body of

52



the patent. We rely on the measure that aggregate papers’ citations in both title and text.
In Appendix F we report that similar results hold when computing different percentiles or
considering papers’ citations as a dichotomous variable.

Innovation Network We construct a measure of innovation network centrality at the US
Patent Classification (USPC) level using the citation flow measure of Acemoglu et al. (2016)
(available online). In defining the citation network, we follow the analysis in Acemoglu et al.
(2016) and exclude self-citation (citations within USPC categories), so our centrality measure
is the dominant left eigenvalue of the citation flow network with the leading diagonal set to
zero. Finally, we crosswalk the centrality measure from USPC to CPC codes using the
statistical mapping provided by the USPTO. See H for further details.

Startups and VC. The startup and venture capital-backed flags for patents’ assignees are
based on data constructed by Ewens and Marx (2024).%! The patent-level dataset provides
assignees’ founding year. Following Ewens and Marx (2024), we assign a patent-level startup
flag in cases when the patent filing date is 3 or fewer years from the foundation. The VC-
backed flag is directly provided by Ewens and Marx (2024) as a dummy equal to 1 if the
assignee has received venture capital at any point in its life, and 0 otherwise.

A3 Macroeconomic variables

Our primary source for macroeconomic variables is Antolin-Diaz and Surico (2025). We
measure economic activity using log Real GDP per capita, and its main private components
also in per-capita logs: Private Consumption, sourced from BEA NIPA data (1947-2015),
and Private Investment, which is based on unpublished BEA estimates from 1901 onwards
and interpolated to a quarterly frequency. Research and Development (Total R&D) comes
from FRED Y694RX1Q020SBEA and is expressed in (log) per capita terms by dividing it by
the FRED series CNP160V (civilian noninstitutional population). We similarly transform the
FRED series YOO6RC1Q027SBEA for Private R&D. The GDP deflator is the FRED series
GDPDEF. For productivity, we use Total Factor Productivity (TFP), calculated as the Solow
residual from a Cobb-Douglas production function (with a capital share « = 0.28) and
subsequently adjusted for capacity utilization. The aggregate price level is measured by the
logarithm of the GDP Deflator, and we include Wages using the FRED series COMPRNFB, also
in logs. Finally, the model includes two financial variables: the short-term interest rate series
from Ramey and Zubairy (2018) and stock prices, sourced from R.J. Shiller website (series
Real price) and expressed in logs.

31The dataset used in Ewens and Marx (2024) is shared through foundingpatents.com
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https://www.dropbox.com/scl/fo/g9ap6fpys2b0n8c8m08oc/h?rlkey=yndb34bjnvu5xwxgs1u6n2v5f&dl=0
http://www.econ.yale.edu/~shiller/data.htm

B Additional Results

This Appendix presents additional results on the cyclicality of patents applications in each of
the three patent categories, on the explicit difference in IRFs across patent groups, a historical
decomposition and a counterfactual scenario that elicits the contribution of public-private
innovation partnerships to aggregate productivity and output.

B1 Patent Filing Cyclicality and Effects of Total Patents

In this Section, we show that, unlike R&D expenditure, patent filings do not exhibit business-
cycle cyclicality. This holds for all patents as well as government-interest patents. In Fig-
ure B1 we report the contemporaneous correlation between these variables and Real GDP.
Government-private patents are negatively correlated with GDP, driven by the 1970 reces-
sion. Figure B2 plots the effects on key macroeconomic aggregates of estimating the empirical
model described in Section 2 using total patents as the right-hand side variable. In line with
previous literature (Miranda-Agrippino et al., 2025), an innovation shock measured from
total patents has the properties of a standard technology shock, increasing GDP and TFP
while lowering prices.

B2 Are the effects of government-private and private-private patents
different?

To explicitly assess the statistical difference between the effects of patenting in government-
private and private-private groups, we rely on wild bootstrap with the same multiplier across
the three local projection equations. Both the Sup-Wald test and the Cramér-von Mises test
reject the equality of the estimated response of GDP and TFP. Figure B3 explicitly report
the difference between the estimated response across the two patents group. The delta is
economically sizable and highly statistically significant.

B3 The Bayh—Dole Act

A significant legislative change in patenting occurred in 1980 with the Bayh—Dole Act. The
Act changed the rules for patents funded by the federal government and harmonized regula-
tions across agencies. Before the Bayh-Dole Act, the federal government typically retained
ownership of inventions arising from its funded research. However, the policies were frag-
mented across agencies. The Act was intended to increase the incentives for universities and
research centers to participate in federally funded projects and patent the resulting research,
with the government retaining a license to the patent and acknowledgments of funding. Our
time series approach captures the increased patenting incentives introduced by the Act.
Additionally, the Act also led to the reclassification of the ownership of government-funded
patents from the government to contractors (universities, firms, etc.). To assess whether
classification affects our results, we consolidate the two types of government-funded patents
into a single category. Figure B4 - which corresponds to Figure 3) - provides very similar
insights to our baseline specification: the boost that government-funded patents provide to
GDP and TFP is twice as large as the stimulus coming from privately-funded patents. Figure
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Figure B1: Patent filing cyclicality
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Note. The figure displays the growth rates of real per-capita GDP, RD expenditure, and the number of patents filed in each
category (total, public-private, private-private, and public-public), along with their contemporaneous correlations (p-values in
parentheses). The figure shows that, unlike R€D expenditure, patent filings do not exhibit strong cyclical behavior.
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Figure B2: Macroeconomic effects of a patent shock - all patents
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Note. The figure displays the dynamic effects of an aggregate innovation shock on (log) real per-capita GDP, (log) utilization-
adjusted TFP, (log) real per-capita private R&D expenditure, (log) real per-capita private investment, (log) real wages, and (log)
real per-capita consumption. The shock is an unanticipated increase in the total number of patents, normalized to increase total
patents by 1% on impact. The estimation by local projections follows eq.(1). The set of controls includes 4 lags of total patents,
real per-capita GDP, TFP, real per-capita investment, real stock prices, the T-bill, and real per-capita R&D expenditure. All
variables except the T-bill are in logs. The solid line represents the point estimate, while the shaded areas report 68% and 90%
confidence intervals computed from Newey and West (1987) standard errors. Sample: 1950:Q1-2015:Q/
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Figure B3: Difference between Government-private and fully private effects
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Note. The figure displays the differential effects of government-private and private-private shocks on (log) real per-capita
GDP and (log) utilization-adjusted TFP. The shock is an unanticipated increase in the number of patents by category, normalized
to increase total patents by 1% on impact. The estimation by local projections follows eq.(1). The set of controls includes 4
lags of the patent group shocked and real per-capita GDP, TFP, real per-capita investment, real stock prices, the T-bill, real
per-capita RED expenditure, and the number of patents in other groups. All variables except the T-bill are in logs. The solid
line represents the point estimate, while the shaded areas report 68% and 90% confidence intervals computed from wild bootstrap
standard errors. Sample: 1950:Q1-2015:Q4

B5 - which corresponds to Figure 8a) - is also consistent with the results in the main text:
NIH, HHS, and DoE shocks lead to large gains to both GDP and TFP, while the contribution
of DoD and NASA is smaller or not statistically significant.

B4 Controlling for Major Institutional Events

Several patent changes occurred in the US patent law between 1950 and 2015. Our patent
series exhibits three significant spikes associated with such changes (see Figure 1). The
baseline results are unaffected if we dummy out the significant spike associated with TRIPS
or all three events (Figure 5b). Below, we provide a short description of these changes.

Creation of the Court of Appeals for the Federal Circuit (1982). In 1982, the
establishment of the Court of Appeals for the Federal Circuit significantly enhanced patent
protection by improving judicial consistency and favoring patent holders during infringement
cases. This judicial shift increased patenting incentives, leading to a substantial increase in
filings.

Implementation of the TRIPS Agreement (1995). The introduction of the Agree-
ment on Trade-Related Aspects of Intellectual Property Rights (TRIPS) in 1995 standardized
international patent regulations (following the GATT Uruguay Round agreements), signifi-
cantly enhancing transparency and discouraging strategic patenting behaviors. By aligning
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Figure B4: Effects on GDP and TFP - grouping government-funded patents
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Note. The figure displays the dynamic effects of innovation shocks in each category of patents on (log) real per-capita GDP and
(log) utilization-adjusted TEFP. This is a robustness check of the baseline results in Figure 3. The estimation by local projections
follows eq.(1). The size of the shock is normalized to increase total patents by 1% on impact. The set of controls is the same as
in the baseline specification. The solid line represents the point estimate, while the shaded areas report 68% and 90% confidence
intervals computed from Newey-West standard errors. Sample: 1950:Q1-2015:Q4.



Figure B5: Federal Agencies breakdown - unique government-funded category
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Note. The figure displays the dynamic effects of innovation shocks in each category of patents (government-funded, privately-
funded; by column) on (log) real per-capita GDP and (log) utilization-adjusted TFP (by row) by agency-sectoral breakdown.
The estimation by local projections follows eq.(1). The size of the shock is normalized such that the peak response of total
patents is 1%. The set of controls includes 4 lags of the patent group shocked and real per-capita GDP, TFP, real per-capita
investment, real stock prices, the T-bill, real per-capita RE&D expenditure, and the number of patents in other groups. All
variables except the T-bill are in logs. Colored (gray) lines denote (no) significance at the 68% level according to Newey and
West (1987) standard errors. Sample: 1950:Q1-2015:Q4 (except for ‘University’ in the second column, 1975q1-2015:Q4).
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U.S. patent rules with global norms, the agreement notably diminished practices such as ”sub-
marine patents” and modified the duration of patent protection, resulting in an immediate
increase in patent filings.

Enactment of the America Invents Act (2013). Implemented in March 2013, the
America Invents Act introduced a crucial shift in patent law by transitioning from a "first-
to-invent” to a "first-inventor-to-file” priority system. This reform aimed to simplify and
accelerate the patenting process, motivating inventors to disclose innovations promptly and
thereby increasing patent application filings around the period of its enactment.

C The Anatomy of Public Innovation

This Appendix provides further details on government-funded innovations. We report the top
government-private and private-private assignees in our dataset, provide details on government-
funded historically important patents, and offer insights from key studies.

C1 Top assignees in public-private partnerships and examples of
important public-interest patents

Table C1 reports entities that own most patents in the government-private and private-
private categories. The University of California, MIT, and General Electric are the top three
assignees in the first category. IBM, Samsung and Canon are the top three in the privately
funded patents.

Table C2 reports government-funded patents in the historically important group identified
by Kelly et al. (2021).%? As the list ended in 2002, we have extended it till 2015 by employing
Chat-GPT Deep Research and manually verifying all information.

32The list was based on a list of 250 historically important patents formerly available from the USPTO.
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Table C1: Top Assignees by Public and Private Interest

Public-Private

‘ Private-Private

Name Count ‘ Name Count
University of California 6537 IBM Corporation 113608
Massachusetts Institute of Technology 3301 Samsung Electronics 87658
General Electric Company 2547 Canon 65872
California Institute of Technology 2266 Fujitsu 48771
Wisconsin Alumni Research Foundation 2158 Sony Group 41398
Stanford University 1523 General Electric Company 40694
University of Texas System 1425 Toshiba 39858
Johns Hopkins University 1256 Hitachi 37172
University of Michigan 1157 Intel Corporation 34992
Harvard University 1079 Mitsubishi Electric 32575
Columbia University 1013 Sumitomo Electric Industries 30523
Boeing Company 1000 NEC Corporation 28600
UT-Battelle, LLC 1000 Siemens AG 27206
Northwestern University 966 Microsoft Corporation 26115
Raytheon Company 885 Micron Technology 24477
Honeywell International Inc. 869 LG Electronics 23918
University of Pennsylvania 841 Seiko Epson 22734
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Table C2: Historically important patents with public interest

‘ Patent ‘ Year ‘ Inventor ‘ Invention ‘ Govt. Interest ‘ Private actor ‘ Agency ‘
1980972 | 1934 | Small Lyndon Frederick Morphine pub-pub -
2206634 | 1940 | Enrico Fermi et al Radioactive Isotopes pub—pub DOE
2329074 | 1943 | Paul Muller DDT - Insecticide pub-priv Novartis DOD
2404334 | 1946 | Frank Whittle Jet Engine pub—priv Power Jets Limited | DOD
2682050 | 1954 | Andrew Alford Radio Navigation Sys- | pub—priv Andrew Alford DOD

tem
2708656 | 1955 | Enrico Fermi et al Neutronic reactor pub-pub DOE
2708722 | 1955 | An Wang Magnetic Core Memory | pub—priv An Wang DOD
2816721 | 1957 | R. J. Taylor Rocket Engine pub—pub DOD
2835548 | 1958 | Robert C. Baumann Satellite pub-pub DOD
2879439 | 1959 | Charles H. Townes Maser pub—priv Charles H. Townes | DOD
3093346 | 1963 | M. A. Faget et al First Manned Space | pub—pub NASA
Capsule
3156523 | 1964 | G. T. Seaborg Americium (Element 95) | pub—pub DOE
3478216 | 1969 | G. Carruthers Far-Ultraviolet Camera | pub-pub DOD
4237224 | 1980 | Boyer & Cohen Molecular chimeras pub—priv NSF
4363877 | 1982 | H. M. Goodman et al Human Growth Hor- | pub—priv UCSD NIH
mone
4399216 | 1983 | Richard Axel et al Genetic transformation | pub—priv Columbia  Univer- | NIH
sity
4468464 | 1984 | Boyer & Cohen Molecular chimeras pub—priv Stanford NSF
4634665 | 1987 | Richard Axel et al Genetic transformation pub-priv Columbia  Univer- | NIH
sity
4838644 | 1989 | Ellen Ochoa et al Recognizing Method pub-pub DOE
5149636 | 1992 | Richard Axel Genetic transformation pub—priv Columbia  Univer- | NTH
sity
6285999 | 2001 | Larry Page Google PageRank pub-priv Stanford NSF
6677082 | 2001 | Michael Thackeray et al Lithium ion batteries pub-priv UChicago Argonne | DoE
6413802 | 2002 | Chenming Hu et al 3D-transistor geometry | pub-priv UCSD DoD
6506559 | 2003 | Andrew Fire et al RNA interference | pub—priv Carnegie Insti- | NIH
(dsRNA) tution, UMass
Boston
6794534 | 2004 | Robert H. Grubbs Olefin-metathesis Ru | pub-priv Caltech NIH
catalyst
8278036 | 2009 | Katalin Kariko and Drew Weissman | mRNA pub-priv U Penn NIH
7797367 | 2010 | David Gelvin et al Wireless Integrated Net- | pub—priv Sensoria Corpora- | DoD
work Sensors tion
8367991 | 2011 | Timothy Bradley Modulation device for a | pub—pub DoD
mobile tracking device
8183038 | 2012 | James A. Thomson Induced-pluripotent pub-priv U of Wisconsin NIH
stem cells
8185551 | 2012 | Bradley Kuzmaul et al Disk-resident streaming | pub—priv Rutgers University | NSF
dictionary et al
8399645 | 2013 | Dario Campana et al CAR-T  cell therapy | pub-—priv St Jude Childrens | NIH
(cancer treatment) Research Hospital
8697359 | 2014 | Feng Zhang CRISPR-Cas9 genome | pub—priv MIT, Broad Insti- | NIH

editing

tute

Note. The table reports public-interest patents within the list of historically important patents defined by Kelly et al. (2021),
extended to 2015 using ChatGPT 03-pro with deep research.
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C2 Case Studies

In this Appendix, we present eight case studies — six success stories and two notable failures
— of patents that exemplify the main categories of interest in this paper: patents funded by
the government but developed and owned by the private sector; patents funded and owned
by the public sector; patents funded by the government and developed by private startups.

I) Public-private patents funded by the National Institutes of Health (NIH).
There are many notable examples of successful patents funded by the government but owned
by the non-federal entities that have laid the foundation for profound technological accel-
eration across various fields. Among others, breakthroughs in medical research conducted
together with the private sector improved disease treatment planning and enabled earlier
and more accurate diagnosis. One of them is the groundbreaking research on RNA inter-
ference (RNA1i) using double-stranded RNA, published by Andrew Fire and Craig Mello in
1998. The same year, a patent on that discovery was filed by the two researchers with US
Patent No. 6,506,559, then granted in 2003. This discovery, funded in part by the NIH,
revolutionized molecular biology by providing a powerful tool to selectively inhibit genes,
enabling advances in drug development and therapeutic interventions. RNAi technology has
had vast implications in biotechnology and medicine, leading to new treatments for diseases
such as viral infections and cancers, and has spurred a thriving industry centered around
gene-silencing technologies. For such achievement, Andrew Fire and Craig Mello received
the Nobel Prize in Physiology or Medicine in 2006.

IT) Public-private patents funded by the National Science Foundation (NSF).
Other examples pertain to the role of the National Science Foundation in developing foun-
dational research across manufacturing, networking, and computer technologies. In the field
of computer science, the development of the PageRank algorithm at Stanford University un-
der NSF’s Digital Library Initiative formed the backbone of Google’s search engine. Before
PageRank, most search engines ranked web pages based mainly on counting how often search
terms appeared in a page’s text, often leading to low-quality or spammy pages ranking high.
PageRank, by contrast, introduced a network-based ranking system where pages gained im-
portance not just by their content but by how many other pages linked to them, and by the
importance of those linking pages. In other words, a link from a highly ranked page (like a
respected academic site) counted much more than a link from a random blog. This founda-
tional algorithm that considers the quality of links and capture the ‘collective intelligence’
of the Web revolutionized the search of the Internet, transformed the access of information
and catalyzed the growth of the digital economy. The assignee of the patent was Stanford
University, as Larry Page was a Ph.D. student there when, together with Sergey Brin, he
developed the algorithm. The patent was filed in January 1998 (U.S. Patent No. 6,285,999)
and preceded by a few months the foundation of Google.

IIT) Public-private patents involving a startup. Publicly funded research has been
particularly effective when collaborating with private startups, which have greatly benefited
from such partnerships. A prime example is U.S. Patent No. 7,148,040, filed in 2002 and
titled “Method of Rapid Production of Hybridomas Expressing Monoclonal Antibodies on
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the Cell Surface,” which was developed shortly after the founding of a pioneering bhiotech
startup, Abeome Corporation. This patent, which includes a government interest state-
ment acknowledging direct public-sector involvement in its development, describes innovative
methods for rapidly generating hybridoma cells that display monoclonal antibodies on their
surfaces, greatly accelerating antibody discovery and production. The underlying research
was firmly rooted in publicly funded work in cellular biology and immunology, supported by
the National Institutes of Health (NIH). The startup utilized this foundational knowledge
to create practical, scalable technologies that streamlined monoclonal antibody development
for therapeutic and diagnostic applications. Patents like this have advanced biotechnology
by enabling faster drug discovery and personalized medicine, reinforcing the vital role of
translating government-sponsored research into impactful commercial innovations.

IV) Highly-disruptive public patents funded by the Department of Defense.
Some patents with public interest and public ownership have also been extraordinarily disrup-
tive. One of the most consequential examples is U.S. Patent No. 3,789,409, titled “Navigation
System Using Satellites and Passive Ranging Techniques,” issued in 1974 and attributed to
Roger L. Easton, a key figure in the development of the Global Positioning System (GPS).
This patent laid the groundwork for satellite-based positioning by describing a system that
used precise timing signals from orbiting satellites to determine the location of a receiver
on Earth. Crucially, the invention introduced concepts such as passive ranging, time syn-
chronization via atomic clocks, and orbital tracking—all of which became central to modern
GPS systems. Developed at the Naval Research Laboratory (NRL) and fully funded by the
U.S. Department of Defense, the invention was assigned to the U.S. government, exemplify-
ing a case of direct public ownership of high-impact intellectual property. Initially intended
for military navigation and targeting, the technology was eventually declassified and re-
leased for civilian use, catalyzing a transformation in global navigation, logistics, agriculture,
and everyday consumer behavior. The patent’s core principles have since been embedded
in virtually every GPS-enabled device—from smartphones and car navigation systems to
precision-guided farming equipment and autonomous vehicles—demonstrating the enormous
long-term value of publicly funded innovation.

V) Highly disruptive public patents funded by the Department of Energy and
the Department of Defense. Other examples of important patents developed through
federal agency initiatives come from the energy sector. One of the most consequential is U.S.
Patent No. 2,708,656, titled “Neutronic Reactor,” filed on December 19, 1944, by Enrico
Fermi and Leo Szilard, and granted on May 17, 1955. This patent outlines the design of a
nuclear reactor using graphite as a moderator and natural uranium arranged in a geometric
lattice to sustain a controlled nuclear chain reaction. The innovation solved critical challenges
in reactor stability and safety, laying the foundation for nearly all modern nuclear reactor
designs. The research was conducted under the Manhattan Project, a top-secret World War
IT initiative managed by the Department of War (a precursor to today’s Department of
Defense), and later transferred under the stewardship of the Department of Energy, which
now oversees many of the resulting technologies and intellectual property. The University of
Chicago, through its Metallurgical Laboratory (Met Lab), was a central site of this work and
where Fermi’s team achieved the world’s first controlled nuclear chain reaction in 1942. The
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patent’s long-term impact has been profound: it enabled the development of both civilian
nuclear power plants—now a major source of carbon-free energy—and numerous advances in
nuclear safety, reactor design, and scientific instrumentation. The reactor principles outlined
in this patent continue to influence nuclear innovation across energy, medicine, and defense.

VI) The role of the public in developing GPS technologies. Some patents with
public interest and public ownership have also been extraordinarily disruptive. A prime
example is U.S. Patent No. 3,126,545, titled “Satellite Hyperbolic Navigation System,” issued
on March 24, 1964, to I. D. Smith Jr. and assigned to the United States government. This
patent encapsulated the core principles of the Transit navigation system, the world’s first
operational satellite-based navigation network. Developed in the late 1950s and early 1960s
by Johns Hopkins University’s Applied Physics Laboratory (APL) in close collaboration with
and under the sponsorship of the U.S. Navy, the project was fully funded by the Department
of Defense (DoD). Transit eliminated the need for fixed ground-based infrastructure and
delivered global positioning capabilities long before the advent of GPS. Operational from
1964 through the 1990s, the system introduced precursor technologies to the architecture of
the Global Positioning System (GPS).

NASA subsequently played a critical role in extending these capabilities into space-based
applications. One such contribution is captured in U.S. Patent No. 7,548,199, titled “Radi-
ation Hardened Fast Acquisition Weak Signal Tracking System and Method,” issued in 2009
and assigned to NASA. This invention enabled GPS receivers to rapidly acquire and track
weak positioning signals in the challenging environment of Low Earth Orbit, allowing for
precise autonomous navigation of satellites and spacecraft. By hardening GPS technology
for use in space, NASA extended the utility of satellite navigation beyond Earth, reinforcing
the broad and enduring impact of federally funded innovation.

VII) Public failure (a). A notable example of government-funded research that is re-
garded as a failure is U.S. Patent No. 2,992 981, titled “Neutronic reactor core”, granted on
July 08, 1961, and assigned to the U.S. Atomic Energy Commission (AEC), a predecessor
to the Department of Energy. This patent outlined a design for a nuclear reactor that could
be used to power a jet aircraft, promising virtually unlimited flight endurance. Funded by
the AEC and the Department of Defense through the Aircraft Nuclear Propulsion (ANP)
program in the 1950s, the initiative included the NB-36H “Crusader” testbed and plans for
the Convair X-6 nuclear bomber. Despite over $1 billion of funding and years of high-profile
research, reactor flights never moved beyond shielding tests, and no aircraft ever flew using
nuclear power. The entire program was canceled in 1961, with the X-6 never built. Though
the scientific work informed later nuclear and shielding technologies, the core promise—an
operational nuclear-powered airplane—was never realized.

VIII) Public failure (b). Another example is that of U.S. Patent No. 7,394,016, titled
“Bifacial Elongated Solar Cell Devices with Internal Reflectors,” granted on July 15, 2008,
to Benyamin Buller et al. and assigned to Solyndra LLC. The patent outlines the company’s
signature cylindrical CIGS (copper indium gallium selenide) solar cell design, arranged in
tubular casings with internal reflectors, intended to enhance efficiency. The technology was
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backed by a large federal commitment—a $535 million loan guarantee from the U.S. Depart-
ment of Energy (DOE) under the 2009 stimulus program, making Solyndra a high-profile
centerpiece of clean-energy investment. Yet, despite its patented innovation, Solyndra could
not compete with rapidly declining costs of silicon-based panels from overseas, and by August
2011, the company filed for bankruptcy, leaving taxpayers with a substantial loss.

These cases stand as cautionary examples: even with robust federal funding, dramatic
technological breakthroughs are not guaranteed.

D Construction of the Instrument for the LP-IV Model

In this section we provide further details on the construction of the narrative IV.

We identify swings in patent filings as those quarters in which g-o-q growth rates are
above one standard deviation for each category of patents. We then run a narrative search
on regulatory /legislative events associated with those dates. We rely on Chat-GPT 03-pro
deep search, which we then cross-validate with Gemini, and verify the consistency of the
sign of the swing with the direction of the institutional event. Finally, we manually audit all
cases. Table D1 reports the related information, including an assessment of the directness
of the connection between the event and the patent swing. This assessment, in particular,
reflects the potential delay between the institutional event and the swing in patents. Results
are robust if we retain only the "direct” events.

Table D1: Swings in patents filings and associated institutional events

Date Patents Event Type
Q4-1950 Pub-pub Gov’t title to employee inventions Direct
Q4-1952 Pub-pub no event NA
Q1-1953 Pub-pub no event NA
Q2-1954 Pub-pub Atomic Energy Act of 1954 Direct
Q3-1954 Pub-pub no event NA
Q1-1958 Pub-pub National Aeronautics and Space Act Direct
Q4-1958 Pub-pub National Aeronautics and Space Act Direct
Q3-1959 Pub-pub National Aeronautics and Space Act Direct
Q4-1959 Pub-priv NASA patent stance + EO 10930 (contractor adjustment effects) Indirect
Q1-1960 Pub-priv NASA patent stance + EO 10930 (contractor adjustment effects) Indirect
Q4-1960 Pub-pub no event NA
Q1-1961 Pub-pub National Aeronautics and Space Act Direct
Q2-1961 Pub-pub National Aeronautics and Space Act Direct
Q1-1962 Pub-priv NASA patent stance + EO 10930 (contractor adjustment effects) Indirect
Q3-1963 Pub-pub 1963 Presidential Memorandum (flexible gov’t patent policy) Direct
Q3-1964 Pub-pub 1963 Presidential Memorandum (flexible gov’t patent policy) Direct
Q1-1966 Priv-priv Graham v. John Deere (non-obviousness) Indirect
Q1-1966 Pub-pub 1963 Presidential Memorandum (flexible gov’t patent policy) Direct
Q2-1966 Pub-priv Implementation of 1963 policy across agencies Indirect
Q3-1966 Pub-priv Implementation of 1963 policy across agencies Indirect
Q1-1967 Pub-priv Implementation of 1963 policy across agencies Indirect
Q2-1967 Pub-priv Implementation of 1963 policy across agencies Indirect
Q3-1967 Pub-priv Implementation of 1963 policy across agencies Indirect
Q4-1967 Pub-priv Implementation of 1963 policy across agencies Indirect
Q3-1969 Pub-priv HEW reinstates Institutional Patent Agreement (IPA) program Direct
Q4-1969 Pub-priv HEW reinstates Institutional Patent Agreement (IPA) program Direct
Q1-1970 Pub-priv HEW reinstates Institutional Patent Agreement (IPA) program Direct
Q1-1972 Priv-priv no event NA
Q2-1972 Pub-priv Nixon 1971 patent policy + momentum toward IPA expansion Direct
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Date Patents Event Type
Q4-1972 Pub-pub no event NA
Q4-1973 Pub-pub no event NA
Q4-1973 Pub-priv NSF adopts IPA model (1973) Direct
Q2-1974 Pub-pub Nixon 1971 policy reaffirmation (shift to contractor ownership) Direct
Q4-1974 Pub-pub Nixon 1971 policy reaffirmation (shift to contractor ownership) Direct
Q2-1976 Pub-pub Nixon 1971 policy reaffirmation (shift to contractor ownership) Direct
Q1-1977 Pub-pub no event NA
Q1-1977 Pub-priv Legislative push/Carter DPR on innovation (anticipation) Indirect
Q1-1978 Pub-priv Legislative push toward uniform policy (anticipation) Indirect
Q3-1978 Pub-pub no event NA
Q1-1982 Pub-pub Bayh-Dole implementation period (ownership to universities/small biz) Direct
Q2-1982 Pub-pub Bayh—Dole implementation (OMB A-124 issued Feb 1982) Indirect
Q3-1982 Priv-priv Federal Courts Improvement Act (CAFC created) Indirect
Q3-1982 Pub-pub Bayh-Dole implementation (large drop in gov’t-owned patents) Direct
Q4-1982 Priv-priv no event NA
Q4-1982 Pub-pub Bayh-Dole implementation (large drop in gov’t-owned patents) Direct
Q4-1982 Pub-priv Bayh-Dole + implementing regs (universities/small biz retain title) Direct
Q1-1983 Priv-priv no event NA
Q1-1983 Pub-priv Bayh-Dole (continuing surge of non-federal ownership) Direct
Q4-1983 Pub-priv Reagan 1983 memo (extends Bayh-Dole rights to all contractors) Direct
Q1-1986 Pub-pub Federal Technology Transfer Act (1986) Direct
Q2-1986 Pub-pub no event NA
Q4-1986 Pub-pub no event NA
Q1-1987 Pub-pub Federal Technology Transfer Act (1986) Direct
Q1-1988 Pub-pub Federal Technology Transfer Act (1986) Direct
Q2-1992 Pub-pub no event NA
Q4-1992 Pub-pub no event NA
Q4-1992 Pub-priv American Technology Preeminence Act (Feb 1992) + STTR Act (Oct 1992)  Direct
Q1-1993 Pub-pub no event NA
Q1-1993 Pub-priv American Technology Preeminence Act + STTR Act Direct
Q2-1993 Pub-pub no event NA
Q4-1994 Pub-pub no event NA
Q2-1995 Priv-priv URAA patent-term change (pre-6/8/1995) Direct
Q2-1995 Pub-pub no event NA
Q2-1995 Pub-priv NIH rescinds “reasonable pricing” clause (Apr 1995) Direct
Q3-1995 Priv-priv URAA (post-deadline) Direct
Q3-1995 Pub-pub no event NA
Q3-1995 Pub-priv NIH rescinds “reasonable pricing” clause (aftermath) Direct
Q4-1995 Priv-priv URAA (aftermath) Direct
Q4-1995 Pub-priv NIH rescinds “reasonable pricing” clause (aftermath) Direct
Q3-1996 Priv-priv URAA (long-term adjustment) Direct
Q4-1996 Pub-priv National Technology Transfer and Advancement Act (1995/96) Direct
Q3-1997 Pub-pub no event NA
Q1-1998 Pub-pub no event NA
Q4-1998 Pub-pub no event NA
Q1-1999 Pub-pub no event NA
Q1-2000 Pub-pub no event NA
Q4-2003 Pub-pub no event NA
Q1-2004 Pub-pub no event NA
Q1-2005 Pub-pub no event NA
Q2-2005 Pub-pub no event NA
Q1-2008 Pub-pub no event NA
Q2-2008 Pub-pub no event NA
Q3-2008 Pub-pub no event NA
Q4-2008 Pub-pub no event NA
Q4-2009 Pub-pub no event NA
Q2-2010 Pub-pub no event NA
Q1-2012 Pub-pub ATA™ (anticipatory/admin changes ahead of 2012-2013 roll-out) Direct
Q1-2013 Priv-priv ATA (pre-3/16/2013 first-to-file) Direct
Q1-2013 Pub-pub no event NA
Q1-2013 Pub-priv ATA (pre-3/16/2013 first-to-file) Direct
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Date Patents Event Type

Q2-2013 Priv-priv ATA (post-deadline dip) Direct
Q2-2013 Pub-pub no event NA
Q2-2013 Pub-priv ATA (post-deadline dip) Direct
Q3-2013 Priv-priv ATA (aftermath/normalization) Direct
Q3-2013 Pub-pub no event NA
Q1-2014 Pub-pub no event NA
Q1-2014 Pub-priv ATA (adjustment period) Direct
Q2-2014 Pub-pub no event NA
Q2-2014 Pub-priv ATA (adjustment period) Direct
Q3-2014 Pub-pub no event NA
Q4-2014 Pub-pub no event NA
Q1-2015 Pub-pub no event NA
Q2-2015 Pub-pub no event NA
Q2-2015 Pub-priv ATA (adjustment period) Direct

Note. This table lists quarters in which patent filings exhibit a “swing,” defined as a quarter-over-quarter growth rate
exceeding one standard deviation within each patent category. Dates are labeled by calendar quarter. Patents indicates the cate-
gory: Pub—pub = government-funded and government-owned; Pub—priv = government-funded and privately owned; Priv—priv
= privately funded and privately owned. Event summarizes statutes, executive orders/memoranda, agency rules/quidance, or
magor court decisions plausibly linked to the swing. Type classifies the linkage: Direct = a specific, timeable policy/judicial
change with clear relevance to the category and expected near-term impact; Indirect = broader policy climate or anticipa-
tory/implementation effects; NA = no salient event identified. We enforce sign consistency between the swing and the event’s
expected direction.

We then turn to a more detailed description of institutional events associated with patent

swings:

Executive Order 10096 (1950). Issued by President Truman in response to the growing
size of federally financed research during World War II, this order established presumptive
government ownership of inventions created by federal employees within the scope of their
duties, with limited exceptions and an appeals process.

Atomic Energy Act Amendments (1954). Congress reversed the 1946 ban on private
ownership of nuclear inventions, permitting private patents for civilian nuclear power technol-
ogy with safeguards and licensing provisions. The change sprang from Eisenhower’s “Atoms
for Peace” Cold War strategy.

National Aeronautics and Space Act (1958). Section 305 granted NASA default own-
ership of contract inventions but allowed the agency to waive those rights whenever private
control was expected to yield faster progress. The waiver clause was intended to mobilize
industrial potential in the wake of the Sputnik crisis. Within three years, waivers were rou-
tinely granted on NASA discoveries, and “pub—priv” aerospace filings spiked, signaling that
flexible patent ownership could accelerate mission technology.

NASA Waiver Practice and Executive Order 10930 (1959-1961). As NASA’s In-
ventions and Contributions Board processed hundreds of waiver petitions, Kennedy abolished
the older Government Patents Board and reassigned its functions. These refinements were
administrative lessons from the Space Race. Faster decisions reassured contractors, resulting
in a noticeable increase in privately owned space-related patents between 1961 and 1963.
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Presidential Memorandum on Government Patent Policy (1963). President Kennedy
instructed agencies to strike a balance between public access and commercial promise, aban-
doning any single rule of ownership. The memo drew on NASA’s success. Agencies that
embraced the guidance saw contractor assignments rise sharply. In other ares the govern-
ment encouraged direct government ownership, leading to surge in pub-pub patent filings.

Grahamv. John Deere (1966). The Supreme Court clarified “non-obviousness,” requir-
ing courts to compare prior art and secondary factors before granting patents. This legal
tightening reflected a shift in the legal doctrine on patenting.

Agency Roll-Out of Flexible Policy (1966-1967). Departments translated the 1963
guidance into waiver rules and contract clauses, thereby reducing administrative ambiguity
and supporting the wider use of contractor titles where commercialization prospects war-
ranted. The clearer playbook halved processing times and contributed to boosting the share
of government-funded inventions patented by non-federal entities.

HEW Institutional Patent Agreement Revival (1968). To spur drug development,
HEW (later NIH) reinstated the Institutional Patent Agreement (IPA), giving trusted uni-
versities the first option on patent title, in an effort to enhance public health. Medical schools
increased their patent filings.

Nixon Patent Memorandum and Early IPA Expansion (1971-1972). The admin-
istration reinforced agency flexibility and, crucially, authorized exclusive licenses on govern-
ment patents. Exclusive rights were seen as a lever to boost the interconnections between
private entities and the government-interest research. Exclusive-license clauses boosted filings
tied to government research.

NSF Adoption of the IPA Model (1973). The NSF extended automatic university
ownership to its grants following the NIH and the Nixon memo. NSF-funded patents climbed
steeply.

Reaffirmations of Contractor Ownership (1974-1976). The Federal Council for Sci-
ence and Technology documented and encouraged agency use of contractor title and exclusive
licensing when commercialization prospects warranted. They helped sustain high public-
private filing rates, signaling a stable and favorable policy climate towards public-private
interactions.

Carter Domestic Policy Review and Legislative Push (1977-1978). The Carter
administration branded inconsistent and fragmented patent policy a drag on productivity
and called for statutory uniformity. The anticipation of a later legislative overhaul alone
prompted universities to formalize their technology-transfer offices and nudged filings upward,
particularly in engineering labs.
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Bayh—Dole Act Goes Live (1981-1983). Effective July 1981, the Bayh-Dole Act al-
lowed universities, nonprofits, and small firms to elect patent title on federally funded in-
ventions; OMB Circular A-124 standardized contract language in 1982. The law addressed
inconsistent and fragmented patent policy related to federally funded research. University
patenting and licensing accelerated through the 1980s as Bayh-Dole was implemented.

Creation of the Court of Appeals for the Federal Circuit (1982). In 1982, the
establishment of the Court of Appeals for the Federal Circuit significantly enhanced patent
protection by improving judicial consistency and favoring patent holders during infringement
cases. This judicial shift increased the incentives for patent filings, resulting in a significant
increase in applications.

Reagan Memorandum Extending Bayh—Dole Rights (1983). President Reagan di-
rected agencies to grant Bayh—Dole privileges also to large contractors whenever statutes
allowed. The order aligned with a broader supply-side agenda. Large corporations inte-
grated the new clauses, and patents on joint R&D projects climbed between 1983 and 1986.

Federal Technology Transfer Act (1986). This statute empowered federal laboratories
to sign CRADAs and share royalty streams with staff scientists, aiming at improving com-
petitiveness. Lab-industry collaborations had multiplied tenfold by 1991, and a new category
of lab-origin patents licensed to private firms emerged.

American Technology Preeminence Act and STTR Program (1992). Congress
improved tech-transfer rules and launched STTR grants by pairing small businesses with
research institutions. Within five years, STTR partnerships had accounted for hundreds of
joint patents, many of which were in advanced composites and medical devices.

URAA-TRIPS (1995). The introduction of the Agreement on Trade-Related Aspects of
Intellectual Property Rights (TRIPS) in 1995 standardized international patent regulations
(following GATT Uruguay Round agreements), significantly enhancing transparency and
discouraging strategic patenting behaviors. By aligning U.S. patent rules with global norms,
the agreement notably diminished practices such as ”"submarine patents” and modified the
duration of patent protection. This resulted in an immediate increase in patent filings in an
effort to exploit the old regime (Bertolotti, 2022).

NIH Drops the “Reasonable Pricing” Clause (1995). After concluding that price
controls discouraged industry collaboration, NIH rescinded the clause from CRADASs, leading
to a subsequent increase in collaboration with non-federal entities.

National Technology Transfer and Advancement Act (1996). By requiring agencies
to rely on private consensus standards and clarifying licensing rights in CRADAs, Congress
sought to align federal procurement with global standards and reduce transaction costs.
Standardized interfaces gave lab innovations a quicker commercial edge, and exclusive licenses
issued by federal labs more than doubled between 1996 and 2000.
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America Invents Act—Preparatory Measures (2012). Ahead of the first-to-file switch,
USPTO overhauled fees, opened satellite offices, and issued examiner guidance. These ad-
ministrative steps reflected modernization goals. Practitioners rushed to clear backlogs; the
total number of applications increased by roughly eight percent in fiscal 2012.

America Invents Act (2013). Implemented in March 2013, the America Invents Act
introduced a crucial shift in patent law by transitioning from a "first-to-invent” to a "first-
inventor-to-file” priority system. This reform aimed to simplify and accelerate the patenting
process, motivating inventors to disclose innovations promptly and thereby increasing patent
application filings around the period of its enactment.

ATA Aftermath and Normalisation (2013-2015). New post-grant reviews, micro-
entity discounts, and clarified prior-art rules have been in place for over two years, lowering
prosecution costs and screening out weak continuations. Small-entity filings rose steadily.

E Historical Decomposition and Counterfactuals

In this Appendix, we lay out how we compute historical decompositions at multiple forecast
horizons and construct counterfactual scenarios on our baseline LP model.

E1 Historical Decomposition

Given the set of observables y¢ that constitute our information set (or set of controls), consider
pat; as the patent group of interest from which we want to extract an innovation shock. In
this discussion, we consider total factor productivity (TFP) as the variable of interest (but
the same holds for any other variables, e.g., GDP). Let h* denote the forecast horizon.

Following Gorodnichenko and Lee (2020), we extract our innovation shock &; by regressing
pat; on the information set at ¢ — 1:

4
pat, = Y ¢y +e (E1)
7=1

Then, define the h* cumulated growth rate of TFP; that isolates low-frequency movements
as h* = 32 (h* = 6 for a cross check reported in Figure E1):

Ah*TFPt = TFPt+h* — TFPt_l <E2)

Regress Ay TFP,; on lagged yi = [yie;] that contains the observables and the shock
themselves to construct the forecast error of the baseline model:

4
Ah* TFPt =+ Z (ﬁ:_jy*t,j + Ct+h* (EB)

j=1
Then we regress the forecast error on the shocks realized between t and the forecast
horizon h*:
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h*
Cithr = Z On€ern + Upin> (E4)
h=0

The R? of this regression for each forecast horizon h is the variance contribution (i.e.
the average over the sample). Conversely, the fitted values eq.(FE4) contain the historical
contribution of the shock of interest. Inference is based on a VAR-based bootstrap as in
Gorodnichenko and Lee (2020).

Figure E1: Historical Decomposition of the Short-Term Component of TFP Growth
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Note. The figure displays the historical contribution of public-private innovation shocks to the forecast errors of the 6-
quarter TFP growth rate. The estimation by local projections is based on the method in Gorodnichenko and Lee (2020). The
solid black line represents the stochastic component of TFP at the 6-quarter horizon, while the purple line (bands) represents
the point estimate (68% and 90%) contribution of the public-private innovation shocks. Inference is based on 2000 bootstrap
replication with small-sample adjustment. Sample: 1950:Q1-2015:Q4.

E2 Counterfactual Scenario

We consider a counterfactual scenario for the 2000s to quantify the implications of the decline
in the government-private innovation shock contribution after its peak. The exercise aims
to answer the question: what would have the level of medium-term TFP been if the shock’s
contribution had remained at its 1996 peak level? We use the bias-corrected median historical
series for the 32-quarter annualized TFP forecast error growth (g;) and the corresponding
median contribution of the innovation shock (s;).

First, we identify the peak median shock contribution that occurred in 1996, which we
denote s*. We then construct a counterfactual series for the TFP medium-term growth, g,
starting from 1996 and extending to the end of the sample. For all data points after the 1996
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peak, the counterfactual is defined as:
Gt =gy — 5+ 8"

This procedure effectively replaces the actual shock contribution from the peak onwards with
the constant peak value, while leaving the baseline growth and the contributions of all other
shocks unchanged.

Both the actual series (g;) and the counterfactual series (g;) are given in annualized
percentage points. We convert these to equivalent quarter-on-quarter growth rates (gf and
G!) using the standard compounding formula: ¢ = (1 + g,/100)"/4 — 1.

We then construct the level of TFP by setting it to a normalized value of 100 at the
quarter of the 1996 peak. The time path of the TFP level is computed by compounding these
quarterly rates. To construct a 90% confidence interval for our counterfactual estimate, we
repeat the entire exercise using the 5th and 95th percentile levels of the shock contribution
at the 1996 peak.

Figure E2: Counterfactual Scenario
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Note. The figure displays the level of realized medium-term TFP (black solid line) and a counterfactual scenario (red dashed
line; bands denote 90% confidence bands) where we hold the government-private innovation shock contribution at the 1996 peak
level till 2007. The numbers displayed in red denote the difference (with confidence interval in square brackets) between the
counterfactual TFP level at the end of the sample and the realized value.

F Alternative Measures of Basicness

In this Appendix, we show that our main findings of: (i) a larger average association between
GDP/TFP and innovations funded by the government and owned by the private sector; (ii)
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a leading role for fully public patents among the most fundamental, basic and scientific
innovations, are robust to several variants of the measures of basicness developed by Kelly
et al. (2021); Kogan et al. (2017); Marx and Fuegi (2020) respectively.

F1 Importance

We consider an alternative definition of the importance measure from Kelly et al. (2021). In
the paper, we use the 5-year version and construct dummies for percentiles that are computed
within each group of patents (i.e., government-private, private-private, and government-
government).

Figure F1 reports the corresponding results obtained by using the 10-year version of
the importance measure. This measure provides a longer-term perspective, but due to the
truncation of the 10-year forward similarity, it ends in 2010. The picture is very similar to
our baseline.

We also construct alternative dummies for above versus below the median (Figure F2)
and across the entire distribution of patents (Figure I'3). In both cases results are consistent
with our baseline.

F2 Reliance on Science

We also consider an alternative definition of top/bottom reliant on science patents based on
the top 25% percentile (Figure F'4) and another one that exploits exclusively the extensive
margin of papers’ citations (Figure F5). These two exercises yield overall consistent results
with our baseline, although in this case, only government-government patents display marked
statistical significance, possibly reflecting a more even distribution of this measure within each
group. The exercise based on the extensive margin is important because it indicates that
the trend in citations within the sample does not influence our conclusions about the role of
science-based patents.

F3 Results Based on an Extended Kogan et al. (2017) Measure

As a further robustness exercise, we construct an alternative measure of patent importance
based on the approach of Kline et al. (2019) to extend the Kogan et al. (2017) patent value
measure to the universe of patents. The objective is to impute a value proxy for patents that
lack observed market-based valuations, using only information available at the time of filing.

We estimate a predictive model of the Kogan et al. (2017) value measure. The explanatory
variables include (following Kline et al. (2019)) patent family size and the number of claims,
which we extend to pre-1976 patents using text analysis of the Google Patents public corpus.
We also include four measures of patent technological relevance, constructed by Martinez
and Moen-Vorum (2025), who demonstrate that these indicators are strong predictors of the
Kogan et al. (2017) patent values, as well as CPC 3-digit technology classes and filing-year
fixed effects. Since our objective is to cover the patent universe, we cannot include firm-level
characteristics such as revenue and employment as predictors, which Kline et al. (2019) show
have high explanatory power for patent values.
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Figure F1: Importance - 10 year measure
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Note. The figure replicates the analysis in Figure 7, comparing the dynamic effects of innovation shocks from the top quartile
versus the bottom three quartiles of patents ranked by importance. As a robustness check, this figure uses the 10-year patent
similarity measure from Kelly et al. (2021) instead of the 5-year measure used in the main text. The estimation by local
projections follows eq.(1). The size of the shock is normalized to increase total patents by 1% on impact. The solid blue (dashed
orange) line represents the point estimate for top 25% (bottom 75%) important patents, while the corresponding shaded areas
report 90% confidence intervals. Sample: 1950:Q1-2010:Q4 (due to the 10-year window).
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Figure F2: Importance - above/below median
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Note. The figure replicates the analysis in Figure 7, but splits patents at the median of the importance distribution (top 50% vs.
bottom 50%) instead of the top quartile. The 5-year patent similarity measure from Kelly et al. (2021) is used. The estimation
by local projections follows eq.(1). The size of the shock is normalized to increase total patents by 1% on impact. The solid
blue (dashed orange) line represents the point estimate for top 50% (bottom 50%) important patents, while the corresponding
shaded areas report 90% confidence intervals. Sample: 1950:Q1-2015:Q4.
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Figure F3: Importance - percentiles for each category
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Note. The figure replicates the analysis in Figure 7, but the importance ranking is done within each patent category (public-
private, private-private, and public-public) rather than across all patents. This tests whether the top quartile of patents in each
funding category is more impactful than the bottom three quartiles of the same category. The estimation by local projections
follows eq.(1). The size of the shock is normalized to increase total patents by 1% on impact. The solid blue (dashed orange)
line represents the point estimate for top 25% (bottom 75%) important patents within each category, while the corresponding
shaded areas report 90% confidence intervals. Sample: 1950:Q1-2015:Q4.
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Figure F4: Reliance on Science - Alternative percentiles
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Note. The figure replicates the analysis in Figure 7b, but compare top 25% with bottom 75% percentiles. The estimation by local
projections follows eq.(1). The size of the shock is normalized to increase total patents by 1% on impact. The solid blue (orange
dashed) line represents the point estimate for top 256% (bottom 75%) most reliant on science patents within each category, while
the corresponding shaded areas report 90% confidence intervals. Sample: 1950:Q1-2015:Q4.

The fitted coefficients from this regression are then used to predict patent values for all
observations, including those without market-based valuations.

We employ this measure as a robustness check alongside the Kelly et al. (2021) importance
metric used in the main analysis. Following the approach described in Section 4, in Figure F6
we divide each patent category into two groups—top 25 percent (blue solid lines) and bottom
75 percent (orange dashed lines)—using the extrapolated Kogan et al. (2017) value measure.
Two main results emerge. First, the top 25 percent of patents are associated with larger
effects on GDP and TFP across all categories. Second, the bottom 75 percent of patents
by value exhibit mostly insignificant effects for private-private and government-government
patents. Overall, these results confirm that the heterogeneity observed in the main analysis is
closely linked to underlying differences in patent value: patents with higher predicted values
account for a disproportionate share of the macroeconomic impact of innovation.

G Definitions of industry and research field patent groups

This Appendix provides detailed information on the construction of industry and research
fields by specifying the exact CPC codes that enter each category. We also show the compo-
sition of patents within agencies, universities, research institutes, and private-private by all
research fields and the four research fields we focus on in the paper.
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Figure F5: Reliance on Science - Extensive Margin
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Note. The figure replicates the analysis in Figure 7b, but the reliance on science groups are based on citing at least one paper
versus not citing any paper. The estimation by local projections follows eq.(1). The size of the shock is normalized to increase
total patents by 1% on impact. The solid blue (dashed orange) line represents the point estimate for patents citing at least
one paper (not citing any papers) within each category, while the corresponding shaded areas report 90% confidence intervals.
Sample: 1950:Q1-2015:Q4.
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Figure F6: The Dynamic Effects of the Most Valuable Innovations
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Note. This figure represents the dynamic effects of innovation shocks to the top quartile of patents ranked by the extended
Kogan et al. (2017) patent value measure (described in the text) versus other patents in each category of patents (public-private,
private-private, public-public; by column) on (log) real per-capita GDP and (log) utilization-adjusted TFP (by row). The
estimation by local projections follows eq.(1). The size of the shock is normalized such as to increase total patents by 1%
on impact. The set of controls includes 4 lags of the patent group shocked and real per-capita GDP, TFP, real per-capita
investment, real stock prices, the T-bill, real per-capita RE&D expenditure, and the mumber of patents in other groups. All
variables except the T-bill are in logs. The solid blue (dashed orange) line represents the point estimate for top 25% (bottom
75%) patents by value, while the corresponding shaded areas report 90% confidence intervals computed from Newey and West
(1987) standard errors. Sample: 1950:Q1-2015:Q4.

80



G1 Industry groups

A patent is assigned to a sector if its primary CPC code in the USPTO Cooperative Patent
Classification (CPC) Master Classification Files for US patent grants matches any of the
criteria listed below.

Table G1: Sector names and associated CPC codes

Sector Name | CPC Codes

B01D, C01B, C10L, C25B, F03B, F03D, G21, HO1M,
HO02J, HO2K, HO02S, Y02C, YO2E, Y02P, Y02T
Aerospace B64, FO2K, FO3H, F42B, F42E, F42F, G05D 1/xx
A61B, A61F, A61J, A61K, A61L, A61M, A61IN, A61P,

Energy

Health A61Q, BO1L, CO7H, CO7K, C12M, C12N, C12P, C12Q,
GO1N, G16H
Manufacturing B08, B21-B30, B29C, B29D, B32B, B33B, B33Y, B65,
B66, C21-C25, GO5B 19/xx, HO5K, Y02P
Education Based on assignee name keywords, not CPC codes

Patents from the education sector. Unlike the technological sectors, this category is
not based on CPC codes. A patent is flagged as being university-assigned if its disambiguated
assignee organization name, converted to lowercase, contains specific keywords. This is de-
termined using regular expression matching. The keywords include general terms such as
"university”, “college”, and "institute of technology”, as well as the names and common
abbreviations of major research universities. The full list reads:

caltech, carnegie mellon, cmu, college, columbia, cornell, cornell research
foundation, drexel, georgia inst tech, georgia tech, harvard, institute
of technology, jhu, johns hopkins, massachusetts inst tech,mit, new york
univ, nyu, ohio state, penn state, pennsylvania state, princeton, regents
of the university of california, rutgers, suny, tamu, texas a&m, texas
aém university, u-m, uc berkeley, uc davis, uc irvine, uc los angeles
uc merced, uc riverside, uc san diego, uc santa barbara, uc santa cruz,
uiuc, umich, university, usc, yale.

G2 Research fields

In Figures G1 and G2, we report the innovation composition of federal agencies and institu-
tional players, such as research institutes and universities, by research field. In Table G2, we
show how individual CPC codes map into the major research fields that we focus upon.
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Figure G1: Share of patents by all research fields in each agency and player
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Note. This chart illustrates the proportions of patents in research fields for different groups. The first five bars (DoD, DoE,
NIH, NASA, NSF) show the composition of patents for the five agencies we study, followed by public interest patents involving
research institutes and universities. The final bar shows the proportions for all private-private patents. Sample: 1950:Q1-
2015:Q4.

Figure G2: Share of patents by main research fields in each agency and player
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Note. This chart illustrates the proportions of patents in the four research fields studied in the paper, and detailed in Table G2.
The first five bars (DoD, DoE, NIH, NASA, NSF) show the composition of patents for the five agencies we study, followed by
public interest patents involving research institutes and universities. The final bar shows the proportions for all private-private
patents. Figure G1 below shows the total composition of patents by research field. Sample: 1950:Q1-2015:Q}4.
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Research field name CPC codes
B01, C01, C07, CO8,

Chemicals C09B, C09D, C09J,
CO9K
Electronics HO1, HO3, HO5, H10

B03, B04, B05, B06,
B07, B21, B22, B23,
B24, B25, B26, B29,
B30, B31, B32, B33,
B41, B65, B66, B67,
C03, C04, C21, C22,
€23, 025, D21, F04,
F15, F16, F26, F27
A61B, A61C, AGID,
AG61F, A61G, A61H,
Healthcare & A61J, A61K, AG61L,
Biotechnology A61M, AGIN, A61P,
C12M, C12N, C12P,
C12Q

Table G2: Research field names and associated CPC codes

Engineering

Note. This chart shows the proportions of patents in the four research fields studied in the paper. A patent is assigned to
a research field if its primary CPC code in the USPTO Cooperative Patent Classification (CPC) Master Classification Files
for US patent grants matches any of the criteria listed below.
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H Innovation network centrality

In this Section, we illustrate the composition of patent categories at the top of the innovation
network centrality distribution by research field, agency, and assignee type. Following Liu
and Ma (2024), network centrality is defined as the dominant left eigenvector of the patent
citation network studied by Acemoglu et al. (2016). Those authors define the patent citation
network as the rate at which patents in category j’ receive citations from patents in category
j, scaled by the number of patents in category j’, where categories are USPC patent classes.
In defining the network, we cumulate their annual measures over ten years and exclude
self-citations (citations within USPC categories). Our centrality measure is therefore the
dominant left eigenvector of the citation flow network, with the leading diagonal set to zero.
Finally, we crosswalk the centrality measure from USPC to CPC codes using the statistical
mapping provided by the USPTO.

In Figure H1, we report the share of patents within each research field, agency, and
assignee type that are in the top 5%, 10%, and 25% of the innovation network centrality
distribution. Among research fields, ‘chemicals’ and ‘healthcare & biotechonology’ have the
largest share of high-centrality patent categories. These are also the fields for which we
estimate the largest GDP and TFP responses for government-private and (for "healthcare &
biotechnology’) government-government patents (see Figure 8b). Among agencies, the NIH
has the highest share of patents at the top of the innovation network centrality distribution,
followed by NSF and DoE, consistent with the results shown in Figure 8. Finally, universities
and research institutes are the assignees with the highest share of high-centrality patents,
consistent with the results presented in Section 6.

In Figure H2, we illustrate the relative concentration of each research field, agency, and
assignee within each top centrality group. Relative concentration is defined as a research
field, agency, or assignee’s share of patents above a given centrality percentile, divided by
that research field, agency, or assignee’s share of total patents. For example, ‘Chemicals’
patents comprise 9.5% of all patents, and 56.5% of patents in the top 5% of patents by
innovation network centrality, so the relative concentration of chemicals in the top 5% is
56.5/9 = 5.9. Consistent with the results illustrated in Figure H1, ‘chemicals’ and ‘healthcare
& biotech.! (among research fields), NIH and NSF (among agencies) and universities and
research institutes (among assignee types) have the highest relative concentration in top
innovation centrality groups.
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Figure H1: Share of patents in top centrality percentiles by research field, agency, and
assignee type
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This figure shows the percentage of patents within research fields (top panel), agencies (middle panel) and assignee types (bottom
panel) that are in each of the top percentiles of the innovation network centrality distribution, from left to right in each panel
and category top 5% (red), 10% (blue), and 25% (green). The innovation network is defined using patent citations across
technology classes (USPC codes), following Acemoglu et al. (2016); see Section 5.4 for further details.
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Figure H2: Relative concentration in top innovation centrality groups by research field,
agency, and assignee type
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This figure shows the relative concentration of research fields (top panel), agencies (middle panel), and assignee types (bottom
panel) in the composition of three top percentile groups of the innovation network centrality distribution, from left to right in
each panel and category, the top 5% (red), top 10% (blue), and top 25% (green). Relative concentration is defined as each
categories’ share in the total number of patents within a innovation centrality group, relative to that categories’ share in the
total number of patents. For example, Chemicals patents comprise 9.5% of all patents, and 56.5% of patents in the top 5%
of patents by innovation network centrality, so the relative concentration of chemicals in the top 5% is 56.5/9.5 = 5.95. The
innovation network is defined using patent citations across technology classes (USPC codes), following Acemoglu et al. (2016);
see Section 5./ for further details.
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I The Composition of Basic R&D in the United States

National statistics on R&D funding and performance in the US are provided by the National
Center for Science and Engineering Statistics of the NSF. The Center compiles the National
Patterns of RED resources, an annual statistical report that provides an integrated overview
of the U.S. research and development landscape. Data contained in the National Patterns
are based on the following annual surveys: Business Enterprise Research and Development
Survey, Annual Business Survey, Higher Education Research and Development Survey, Survey
of Federal Funds for Research and Development, FFRDCs Research and Development Survey,
and Survey of State Government Research and Development.

R&D is typically divided into three categories: (i) basic research, aimed at acquiring new
knowledge on the foundations of observable facts and phenomena without a specific applica-
tion as outlet; (ii) applied research, directed primarily towards a specific solution or objective;
(iii) experimental development, translating research findings into new or improved products,
processes, or services, and implying prototyping, testing, and iterative improvements. Panel
(a) of Figure 11 reports the breakdown of annual R&D expenditures since 1953 by these three
categories.

R&D expenditures have four main funders: the US government (on average 95% federal
and 5% state/local) through its departments and agencies; higher education institutions
(universities and colleges, here called “universities” for brevity); “private businesses” (98%
per year by US businesses and 2% by foreign companies); “Other non-profit organizations”
including private foundations, research institutes not affiliated with government or higher
education, charitable and philanthropic organizations that conduct or fund research. Panel
(b) of Figure I1 reports the breakdown of annual R&D expenditures since 1953 by source
of funds, focusing on basic research only. The federal government has historically been the
primary source of funding for this type of R&D, although its share has gradually declined
over time as private sector contributions have increased.

The R&D actors discussed above not only fund but also conduct research activities using
cither their own resources or external funding. Panel (c¢) of Figure I1 focuses specifically
on federally funded basic research, showing how these funds are distributed across different
types of performers. Historically, universities have been the dominant performers of federally
funded basic research, with their share increasing steadily over time. Another major group
of performers is that of Federally Funded Research and Development Centers (FFRDCs),
referred to here as "research institutes,” which are typically operated by universities, non-
profit organizations, or industrial firms under contract with federal agencies. Collectively,
universities and research institutes account for approximately 70% of total federal spending
on basic research, on average.
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Figure I1: R&D expenditures in the United States
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Source: National Patterns of R&D Resources 2022-2023, NSF. In Figure (b) and (c), Government includes both federal
government and state and local governments, when the former accounts on average for 95% of the provided funds (b) and
almost 100% of the expenditures (c). The share of basic research performed by the federal government is done with its
departments and agencies.
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J Further Details on Some Key Institutional Players

In this Appendix, we provide more information on some key institutional players, among non-
profit organizations such as research institutes and universities as well as among for-profit
companies such as start-ups. In Table J1, we describe major research institutes and national
lab operators. In Table J2, we group innovations by universities and research institutes by
federal agencies. In Table J3 , we provide some descriptions of the top start-up companies
among innovators who leverage government funds.
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Table J1: Top U.S. Research Institutes and National-Lab Operators

Institute / Entity

Count Description

FFRDC Status

Battelle Memorial Institute

The General Hospital Corporation

The Scripps Research Institute

Los Alamos National Security, LLC

UChicago Argonne, LLC

The Brigham and Women’s Hospital

Dana-Farber Cancer Institute, Inc.

Salk Institute for Biological Studies

Sloan-Kettering Institute for Cancer Research

Brookhaven Science Associates, LLC

829

795

642

453

442

411

347

319

276

275

Major United States nonprofit science and
technology research institute; manages or
co-manages several national laboratories for
the United States Department of Energy
(DOE) and the Department of Homeland Se-
curity (DHS); deep ties to government and
academia.

Legal entity for Massachusetts General Hos-
pital, the oldest and largest teaching hospital
of Harvard Medical School; a world leader in
biomedical research and clinical care.
Leading nonprofit American medical re-
search facility focusing on biomedical re-
search; headquartered in La Jolla, Califor-
nia, and Jupiter, Florida; historically affili-
ated with universities and hospitals.
Consortium including the University of Cal-
ifornia, Bechtel National, BWXT Govern-
ment Group, and URS Energy and Construc-
tion that managed Los Alamos National Lab-
oratory for the United States Department of
Energy; the laboratory is a premier United
States nuclear research facility.

Limited liability company formed by the Uni-
versity of Chicago to manage Argonne Na-
tional Laboratory for the United States De-
partment of Energy; closely tied to University
of Chicago and federal research.

Major teaching hospital of Harvard Medical
School in Boston, Massachusetts; recognized
for biomedical research and clinical care.
Major cancer treatment and research center
in Boston, Massachusetts; principal teaching
affiliate of Harvard Medical School; member
of the Dana-Farber/Harvard Cancer Center
consortium.

Nonprofit scientific research institute in La
Jolla, California, founded by Jonas Salk;
world-renowned for biomedical research, es-
pecially in neuroscience and genetics; inde-
pendent but collaborates with universities
such as the University of California, San
Diego and with the National Institutes of
Health.

Biomedical research division of Memorial
loan Kettering Cancer Center in New Yor
City; world leader in cancer research and
treatment; affiliated with multiple universi-
ties including Cornell University, Rockefeller
1University7 and Weill Cornell Medical Col-

ege.

Limited liability company formed by Battelle
Memorial Institute and Stony Brook Univer-
sity to manage Brookhaven National Labo-
ratory for the United States Department of
Energy; strong ties to the federal government
and academia, including collaborations with
other universities and private sector partners.

Yes

No

No

Yes

No

No

Yes
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Table J2: Breakdown of non-profit public-private patents

Universities ‘ Research Institutes

Agency Frequency Percent ‘ Frequency Percent

DOD 6,749 14.22% 996 9.07%
DOE 5,012 10.56% 3,623 32.99%
NIH 21,978 46.30% 5,231 47.63%
NASA 1,579 3.33% 163 1.48%
NSF 9,936 20.93% 422 3.84%

Table J3: Top startup innovators in public-private patenting

Description

Company Patents
Nanosphere, Inc. 21
Superior MicroPowders LLC 18
Pacific Biosciences of California, Inc. 16
ARCH Development Corporation 15

Molecular Optoelectronics Corp. (MOEC) 10

Biotechnology company specializing in nanoparticle-based
molecular diagnostics; developed the Verigene platform for
multiplex genetic and infectious disease testing; acquired
by Luminex in 2016.

Advanced materials company based in Albuquerque, New
Mexico; developed fine powders and inks (e.g., for fuel
cells, batteries, and catalysts) via spray-based processes;
acquired by Cabot Corporation in 2003.

Developer of single-molecule, real-time (SMRT) DNA se-
quencing systems enabling long-read genomics applications
in human, plant, and microbial biology.

University of Chicago—affiliated technology commercializa-
tion and incubation arm established in 1986; incubated and
managed startups to commercialize research from the uni-
versity and Argonne National Laboratory.

Research and development firm founded in 1993 in Water-
vliet, New York; worked on optoelectronic materials and
thin-film devices for display, sensing, and photonic appli-
cations.
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